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A COMPARATIVE STUDY OF HASH FUNCTIONS FOR

A NEW HASH-BASED RELATIONAL JOIN ALGORITHM

ABSTRACT

among the several relational database operations, the
join operation is the most time-consuming operation;
nonetheless, it is the most frequently used operation.
Although many researchers have endeavored to increase the
speed of the join, this issue remains 1less than fully
explored. In this dissertation, the author's new hash-based
join algorithm is developed and implemented on a
hypothetical database machine, the 'Highly Modular
Relational Database Computer (HIMOD).' The database computer
is equipped with a general purpose processor as a host and a
database coprocessor (DBCP) as a back-end processor. Before
comparing the join attributes for merge, the new join method
attempts to filter nearly all the unnecessary data as early
as possible. Simulation results show that the new hash-
based join method takes about two hundred times less data
movements than the conventional nested-loop join method.
Therefore, the DBCP is designed to be a rapid filter device.

The major operation of the new hash-based join in the
DBCP is hashing; therefore, the study developed a new, fast,
hardware oriented hash function to serve as a hash coder of
the DBCP and speed up filtering. The new hash algorithm and
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the new hash-based join are designed to take advantage of
parallel processing. When both algorithms are implemented
on the parallel architecture hardware DBCP, the response
time for the join operation can be drastically reduced.

This study surveyed several newly developed hash
functions along with well-known hash functions such as
algebraic coding, digit analysis, division, folding,
midsquare, multiplicative, radix, random, and Pearson's
table indexing. The comparative analysis of the hash coders
was based on criteria such as speed, distribution, and cost.
The author's new mapping hash method not only has reliable
and relatively good key distribution, but it also takes only
three clock cycles to calculate a hash address 1if the
mapping hash coder is implemented in hardware. Therefore,
the dissertation concludes that the new mapping hash method
is the best one for the hardware hash coder of the DBCP and

for similar applications.
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CHAPTER 1

INTRODUCTION

Chapter 1 will introduce the main objectives and scope
of the dissertation. To that end, database machine archi-
tectures will be explained, and approaches taken by existing
database computers to accelerate the join relational data-
base operation will be described. This chapter also covers
the 1issues in designing an effective hash coder for the
relational database back-end since the hashing technigue has
become popular in performing join and other relational data-

base operations.

1.1 Scope of Dissertation

Computers were first conceived to perform special com-
putational tasks in research environments, but their use has
grown rapidly and has become more widespread. In this infor-
mation-oriented age, computers are much more involved in
nonnumeric applications rather than numeric computations.
The effective and efficient management of large quantities
of data is of considerable importance to most large organi-
zations, such as industries, scientific research centers,
and military organizations. The growing need for data man-
agement has been accompanied by growing demand for high per-
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formance computers to perform database management effi-
ciently.

In recent years, integrated circuit technology has made
surprising progress in lowering the prices of memory, pro-
cessor, and 1/0 devices. As a result, computer hardware has
become less expensive, making development of a special-pur-
pose computer that is able to effectively manage database
systems economically feasible. Such a special-purpose com-
puter is generally referred to as a database computer or
database machine. These computers are dedicated to perform-
ing some or all database management functions. The defini-
tion of a database computer includes distributed database
management systems which are built as a layer of database
management software with an interface to conventional com-
puters. However, for the purposes of this dissertation, the
term "database computer" refers to devices or processors
specially designed to improve the performance of database
management systems.

Most database computers have been constructed for rela-
tional databases. The advantages of the relational model
over the hierarchical and network models have become
increasingly well recognized and are illustrated in section
2.1.6. Relational database operations are also relatively
easy to implement in hardware. Among relational operations,
the 3join operation is the most time-consuming operation;
nevertheless, it 1is frequently used. The join operation

_2...



concatenates a tuple of the source relation with a tuple of
the target relation if the value(s) of the join attribute(s)
in this pair of tuples satisfy a pre-specified join condi-
tion. The problem of complexity and inefficiency of the
join operation is the major bottleneck for relational data-
base management systems. Researchers have examined and have
developed special devices or processors to accelerate the
join operation, but this research area has not been fully
explored. The aforementioned problems and the technical and
economical feasibility provide researchers the motivation
needed to examine join algorithms that can potentially
produce a faster join.

The purpose of this dissertation is to provide an effi-
cient and effective method for accelerating the time-consum-
ing join relational database operation. The parallel com-
puter architecture that facilitates a faster join and a new
join algorithm, which can perform best when using the archi-
tecture, are presented in this dissertation.

The existing join algorithms are illustrated in Chapter
2 in order to explain both the history of the join operation
and the alternative ways of implementing the join operation.
Hash-based join methods are discussed in detail in section
2.5, since the proposed join algorithm also is a hash-based
join method.

Designing an effective hash coder is in high demand
owing to the fact that hash functions are used in many other

_3._



database operations, as well as in other applications. The
major operation of the new hash-based join is hashing, so a
new fast and effective hash coder is essential in order to
accelerate the join. In Chapter 3, several proposed new
hashing functions, used for a join operation, are introduced
and compared with current hash functions in terms of distri-
bution, speed, and cost. Even though every application envi-
ronment that uses a hash coder is different, the basic
approaches and principles used in implementing a hash coder,
as described in this dissertation, may provide direction for
research or an option for people who are seeking a good hash
coder.

The architecture of the join hardware back-end proces-
sor, using the MC68030 Enhanced 32-bit Microprocessor as the
front-end processor, is presented in Chapter 4. The join
software back-end, which also uses the MC68030 as the front-
end processor, is explained and compared with the hardware
back-end in terms of speed.

Having thoroughly researched the hash functions, I have
concluded that none of the current hash functions meet the
requirements of both extremely fast hash address calculation
and relatively good key distribution. Thus the mapping hash
method is selected for designing the hash coder in the join
coprocessor. Based on the chosen hash method, in Chapter 5,
a new hash-based join algorithm is illustrated, along with
the simulation results, to show its advantages over the con-
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ventional join and other hash-based join methods. Other
relational operations that utilize the implemented hash
coder such as project, union, intersect, and difference are
also discussed in Chapter 5. Finally, a summary of the
whole dissertation and conclusions regarding how to find a
good hardware oriented hash function and an efficient join

algorithm are provided in Chapter 6.

1.2 Database Machine Architectures

1.2.1 Definition of a Database Machine

The conventional approach to database management
requires that the database management system, other applica-
tion programs, and operating system all run concurrently in
the same host computer. The general approach of database
machines (or back-ends) 1is to off-load the database manage-
ment functions from the host computer (or front-end) to a
directly attached special-purpose device (or back-end). The
database back-end performs the intended database functions

with specialized software and/or hardware architecture.

1.2.2 Classification of Database Machines

The back-end processor is categorized as either a hard-
ware or a software back-end. The processor is categorized as

a hardware back-end if there 1is a hardware enhancement or
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modification on the back-end processor. If the database
machine depends only on the innovative software architecture
on the back-end processor, which physically duplicates the
same architecture as the front-end processor, it 1is then
referred to as a software back-end.

The database computer discussed 1in this dissertation
named the "Highly Modular Relational Database Computer
(HIMOD)," uses a single back-end processor fabricated 1in a
single chip. If more than one back-end is used to increase
the system performance through the benefits of concurrency
among the back-ends, it is referred to as a multiple back-
end approach. Accordingly, database machines can be divided
into the following categories: single software back-end,
single hardware back-end, multiple software back-end, and
multiple hardware back-end, all of which are based on their
architectural configurations.

The multiple back-end approach is wutilized by many
database machines 1in order to increase system performance
through parallel processing. There are two major approaches
of parallel processing in multiple back-ends. The first
approach is to have database management functions replicated
in a number of processors so that the data are distributed
to the processors in a parallel manner. This approach is
often called a multiprocessor system with replication of
functions; it is wused by the database machines such as
DIRECT <DEWI1, DEWI2, BORAl>, GAMMA <DEWI4>, HYPERTREE

_6_



<GOOD1>, and DBC/1012 <HSIA2>.

The second approach is to distribute database manage-
ment functions among a number of processors, so that each
dedicated processor performs either one or a small number of
functions efficiently. These processors can be either gener-
al-purpose processors (or software back-ends) or special-
purpose processors (or hardware back-ends). These function-
ally specialized processors speed up the intended database
operations. This approach is often called a multiprocessor
system with distribution of functions. Many database comput-
ers, such as RDBM <AUER1>, SABRE <VALDl1l, VALD2>, and DBC
<HSIAl>, including HIMOD, use this direction. The database
back-end processor in HIMOD is especially dedicated to the
join database operation that is often described as the most
time-consuming, yet frequently used, operation. Because the
join operation is one of the major bottlenecks for the rela-
tional database management system, the database coprocessor
in HIMOD is designed to release this bottleneck which conse-
quently accelerates the join. In Chapter 4, the architec-
tures of both hardware and software back-ends are discussed
and compared in further detail in order to determine the

most effective processing for the join operation.



1.2.3 General Architecture of the Back-End Database

Management Systems

The simplest form of the back-end database management
system is shown in Figure 1-1 which indicates the connec-
tions between the host, the back-end, and the data base in
the secondary storage. The relationship between the host
and the back-end is often considered a master-slave
coupling, in which the master is referred to as a front-end
and the slave is referred to as a back-end. While the front-
end processor is busy executing application programs and
operating system functions such as resource allocation, job
and task management, security and integrity control, and
concurrency control, the back-end processor is dedicated to
the time-consuming database operations, and, in most cases,

it also controls access to the database.

Host interprocessor | Back-End(s) Data
(Agplzcatl?n o link (Database (™ Base
unction) K I Function)
. > -

Figure 1-1. Back-End Database Management System

The interface sequence of application programs is as
follows: the application program issues a service request to
the back-end database management system that indicates the
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operation required and the data to be operated upon. The
back-end database management system also can request and
receive service from the host. If the request from the host
is validated, it 1is then served by the dedicated back-end

processor.

1.2.4 Database Filter and Intelligent Secondary Storage

Device Approaches

Besides classifying database machines according to
their back-ends, database machines can be further classified
according to the kind of problems (or limitations) the group
of database computers attempt to solve (or remove). Some
database computers exploit parallel processing capabilities
that are built into the read/write mechanisms of secondary
storage devices so that the data stored on these devices can
be directly searched and manipulated. This technique allows
the database computer to examine data locally before trans-
ferring the data to the central processing unit (CPU). As a
result, this approach eliminates the limitations of the con-
ventional storage devices in which the content of an entire
relation or file must be brought from the secondary storage
to the main memory for examination by the CPU; with a data-
base computer, on the other hand, only relevant data is
transferred to the CPU for further processing. Database

computers, such as CASSM, RAP, and RARES <SMIT1>, accomplish
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this local review by using a processing element for each
track of a rotating memory device such as a disk, a drum, a
charge couple device, or a magnetic bubble memory.

In addition, slow mechanical movement in secondary
storage devices 1limits the data transfer between these
devices and main memory to the same speed as the storage
devices. The database filter, which resides on the I/0 chan-
nel, filters unwanted data from a requested file in secon-
dary storage and sends only relevant data to the CPU. This
method lessens traffic congestion in the I/0 channel. This
database filter approach 1is used by database machines such

as CAFS <BABBl>, SURE <SUl>, and VERSO <HSIAl>,

1.3 Approaches to Increase the Speed of the Join Relational

Database Operation

Ever since the relational data model was introduced by
E. F. Codd's pioneering paper <CODD1> in 1970, the advan-
tages of the relational data model over the hierarchical and
network models have been increasingly well recognized. As
stated previously, the relational join operation 1is both
frequently used and time-consuming. The join operation
merges a tuple of the source relation with a tuple of the
target relation if the value(s) of the join attribute(s) in
this pair of tuples satisfy a join condition.

In 1977, Blasgen and Eswaran <BLAS1> described several
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methods for evaluating a general query, involving project,
select, and join relational database operations. They com-
pared these evaluative methods based on which method had
fewer accesses to secondary storage. In their examination of
the join operation, both nested-loop and sort-merge algor-
ithms were analyzed and discussed. Because of the work of
these two authors, researchers were generally convinced that
a nested-loop join algorithm performed acceptably on small
or large sized relations when a suitable index existed.
Moreover, Blasgen and Eswaran concluded that a sort-merge
join algorithm would be the choice when no suitable index
existed. Both nested-loop and sort-merge join algorithms and
their actual implementations are described and discussed in
greater detail in Chapter 2.

Based on both nested-loop and sort-merge join methods,
unnecessary tuples that are not necessary to the resulting
relation for the join are still included wuntil the last
moment although they are not necessary to the resulting
relation. Assuming that the amount of data in the source and
target relations is large, but the amount of resulting
tuples are relatively small, then most of the tuples in the
source and target relations are not needed in producing the
output for the join. However, all of those irrelevant tuples
are also brought to main memory from secondary storage via
the 1/0 channel; as a consequence the channel becomes con-
gested, which, in turn, creates the aforementioned I/0 bot-
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tleneck. Many researchers have broached designing a data-
base filter for the join operation to reduce the problem of
channel congestion. Several database computers such as CAFS
<BABBl>, SURE <SUl>, VERSO <HSIAl>, and DBC <HSIAl> have
been designed based on the concept of database filtering.
The hashed address bit array stores filtering technique
used in the CAFS (Content Addressable File Store) filter
device demonstrated dramatic improvement in all join algor-
ithms without substantially increasing hardware cost <DEWI3,
QADA2, SHAP1l, VALD2, SCHN1>. The hashed address bit array
stores technique in CAFS uses single-bit array stores which
are single-bit wide random access memory. The CAFS database
machine reads the source relation (which is smaller than the
target relation), and each value of the join attribute is
transformed into three hash addresses by three functionally
different hash coders. The three produced addresses are used
to mark the corresponding bit array store in parallel. Then
the CAFS reads the target relation, which is larger than the
source relation, and the three hash coders again hash each
value of the join attribute. Using the three hash
addresses, CAFS verifies if the corresponding hash-addressed
bits have already been set. If all three bits have been
set, the join attributes of the target relation may match
with those of the source relation, in this way the potential
matched tuples are sent to the host computer to produce the
tuples of the resulting relation. Meanwhile, the unwanted
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tuples are discarded, since they will not be included in the
resulting relation. Among the potential matched tuples sent
to the host processor, there may be spurious keys; there-
fore, the final screening is 1left to the host processor,
which must compare the two 3join attribute values and then
form the actual join by accessing the corresponding tuple
pairs and concatenating them.

This technique is applied to keywords in the source and
target relations only once. Thus if the smaller source rela-
tion is so large that most of the bits in the bit array
stores are set, the number of filtered target tuples might
be reduced. Therefore, the performance of this technique
is, to a varying degree, dependent on the size of the source
relation, which must be smaller than the target relation.
This data size dependency problem has been solved by the
Stack Oriented Filter Technique (SOFT) which is further
explained in Chapter 5, where the new join algorithm is
introduced.

Since the cost of the main memory has been substan-
tially reduced, hash join algorithms have been recognized as
having a great potential. It is now a well-known fact that
the join algorithm based on hashing 1is more advantageous
than nested-loop or sort-merge join algorithms: a fact that
has been noted by <DEWI3>, One noticeable difference of
hash-based join algorithms is that they minimize the amount
of data moved during the process of executing a join algor-
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ithm. Join algorithms, such as nested-loop and sort-merge,
require frequent key comparisons which results in more data
movements. The three major hash join algorithms are illus-
trated in section 2.5, while time complexities are discussed

in section 2.6.

1.4 Issues in Designing an Effective Hash Coder for

a Database Back-End

The new join database coprocessor (DBCP) uses a hash-
based join algorithm to perform a faster 3join; therefore,
the major operation in the DBCP is hashing. Since millions
of bytes might be hashed out through a hash coder in the
DBCP, designing an effective hash coder in the DBCP has been
another important goal of this research. Hashing has been a
fruitful research area since the early sixties, as noted by
Buchholz <BUCHl1>., Major articles published between 1971 and
1975 <MAUR1, LUM1l, KNOT1> have introduced hash functions and
have analyzed their performances.

However, although these hash functions have been care-
fully examined, none of them fully meets the requirements
for the application of the database filter. Assuming many
tuples are needed to be hashed in a database computer, any
hardware aid can be adapted for a hash coder to calculate
hash addresses very fast. One of the concepts for fast cal-

culation is the parallel processing of each character or
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each bit in the whole key. This idea is feasible only if the
hash coder is implemented in hardware. Fast operations such
as exclusive-OR, negation, and shift operation are recom-
mended procedures. Any time-consuming serial and/or itera-
tive computations should be avoided as much as possible in
order to reduce address calculation time.

It is worth noting that in the hardware back-end
approach, the hash coder does not need to be similar to the
arithmetic logic unit (ALU) of the host processor. The cost
of adapting hardware components need not be very expensive.
I1f the hash coder costs more than the ALU, the price would
be excessive.

In hashing applications, the number of keys is usually
much larger than the number of buckets in the hash table.
Accordingly, the hash coder will certainly map several keys
into the same bucket. If the keys are uniformly distributed
into the buckets, the system performs best. If the hash
coder performs poorly at the distribution of keys, the hash-
based join may run slow because more disk accesses can be
required. Therefore, distribution performance should be
considered as a high priority. However, complicated and
tediously long computations including multiplication and/or
division do not guarantee a distribution of keys better than
short and effective calculations.

To summarize, the requirements for the effective data-
base hash coder should have the following attributes:
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1. competitive distribution performance, compared with
the current well-known hash functions

(e.g., division and multiplicative methods),

2. extremely fast hash address calculation,

(i.e., only few clock cycles)

3. low cost for implementation in a hardware hash

coder.

In Chapter 3, various hash functions including four new
ones such as Maurer's shift-fold-loading, Berkovich's Hu-
Tucker code, and the author's various versions of fold-
shifting and mapping are surveyed. Descriptions of hash
functions are presented, along with a distribution, speed,
and cost analysis, which leads to the conclusion that the
new mapping hash method is a reasonable choice for the rela-
tional database hash coder when it is implemented 1in the

hardware.
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CHAPTER 2

MAJOR METHODS OF IMPLEMENTING THE RELATIONAL JOIN

In this chapter, the principal concepts and advantages
of a database management system are discussed, and the terms
of databases are defined. At this point, the discussion con-
centrates mainly on the relational database model, and its
operators and corresponding examples are illustrated. The
advantages and disadvantages of a relational database are
discussed in order to highlight the possible improvements
for the relational database that can be achieved by means of
special hardware aids. The three major join algorithms are
illustrated, and three hash-based join algorithms are dis-

cussed in detail.

2.1 Terms and Concepts of a Database

2.1.1 What is a Database?

In general terms, a database keeps data in one or more
locations; therefore, a variety of program applications can
access and maintain the information. A database is a collec-
tion of interrelated data that are structurally stored.
Moreover, a database management system is a database capable

of a set of applications such as adding new data and modify-
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ing and retrieving existing data.

2.1.2 Advantages of a Database

According to Date <DATEl> and Martin <MART1>, an organ-
ized database offers the following major advantages. First,
it reduces the amount of redundant data, thus saving storage
space. Second, collected data can be shared by new and
existing applications that operate on the database. Third,
the database will have reduced inconsistency by virtue of
allowing only one entry for each data item. Inconsistency
occurs when there is duplication of an entry and the two
entries are not manipulated in the same way which causes the
two entries to differ from one another. Fourth, database
organization increases clarity and ease of use and decreases
apparent complexity in using data. Fifth, privacy is pro-
vided by security restrictions, and the protection from loss
or damage is thus enhanced. Sixth, it is possible to detect
inaccurate data through integrity control. Seventh, physi-
cal and logical data independence can be achieved, ensuring
that the hardware storage structure or access strategy can
be changed without rewriting the application program.
Achieving logical data independence implies that the overall
logical structures which are expanded by adding new data
items do not affect the application programs. All of these

features are important objectives. Finally, database organ-
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ization can make application development faster, cheaper,
easier, and more flexible. Some of these advantages could

also be design objectives for a database.

2.1.3 Entities, Attributes, and Keys

To understand data structures used to implement a phys-
ical database, certain terms must be defined. The term
entity means the stored information within a data item. An
entity is a distinguishable object, such as a student, a
classroom, or a course. A group of similar entities, such as
all students, all classrooms, or all courses, is referred to
as an entity set.

Entities also contain components which are referred to
as attributes. An entity (e.g., student) might include a
name, student identification number, grade, and major as
attributes. The attributes of similar entities are then
grouped into a set of attributes. For example, {name, grade}
may be considered a set of attributes.

An attribute or set of attributes whose values uniquely
identify each entity within an entity set is called a key
for that entity set. For instance, an entity set that
includes only students from one school could use the student
identification number attribute as a key for that entity

set.
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2.1.4 Relational Data Model

The relational data model <ULLMl, DATEl>, consists of
relations (tables or files). The members (or rows) of a
relation are generally called tuples. The columns of a

relation are referred to as attributes. The theoretical

term domain represents the set of values from which the
actual values appearing in a given column are drawn. The
step-by-step normalization process <CODD1> re-forms the
tables so that each attribute value 1in each tuple is nonde-
composable (or atomic). In other words, at every row and
column in the table there always exists only one value, not
a set of values. Such a relation is said to be normalized.
Operations, such as join, selection, and projection, are
frequently used in relational operations. Several relational
database operations will be explained in section 2.1.5.

The relational data model is chosen for this research,
since it has many advantages over other data models, as
shown in section 2.1.6; moreover, high performance database
machines can be developed using this model. As a matter of
fact, most existing database computers are designed to sup-

port the relational data model.

2.1.5 A Set of Relational Operators and Examples

This section will discuss the background of relational
database operations with illustrative examples (Figure 2-1).

_20_



<Ex 1>

<Ex 3>

Relation R1 Relation R2

Figure 2-1. Examples of Relational Operations
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PROJECT R2 (D, F) <Ex 2> SELECT Rl (B
D F A B C
a c b d g
a a a d c
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<Ex 4> UNION R1l, R2 <Ex 5> INTERSECT Rl, R2

d e f a d c
b a g
a d c <Ex 6> DIFFERENCE Rl, R2
d g a
d e f
b d g

<Ex 7> CARTESIAN_PRODUCT R1l, R2

A B C D E F
d e f a d c
d e f d g a
b d g a d c
b d g d g a
a d c a d c
a d c d g a

Figure 2-1. Continued

PROJECT Relation (Attribute List)

The projection operation involves selecting from each tuple
in the relation only those attributes included in the Attri-
bute List and then eliminating duplicate tuples in the

resulting relation,
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SELECT Relation (Selection Condition)

Selection Condition: a Boolean expression defined over
the columns of the relation. The expression can consist
of membership tests on the value of a column in the
relation and of comparison tests (=, <>, <, >, <=, >=)

between columns and constants or computed values.

The result of SELECTing from a relation is a new relation
consisting only of the rows from the original relation that

satisfy the selection condition.
JOIN Source_Relation Target_Relation (Join Condition)

Join Condition: a Boolean expression of comparisons (=,
<>, <, >, <=, >=) between columns in the source rela-

tion and the target relation.

The result of JOINing two relations is a new relation con-
sisting of all attribute headers from the two joined rela-
tions and tuples formed by concatenating tuples from the
source relation with tuples from the target relation, where
the join attribute in the tuples satisfies the join condi-
tion. In equi-join, the expression of comparison is limited

to equal (=) only.
UNION Relationl, Relation2 (Attribute-pair List)
Attribute-pair List: a list of pairs consisting of an
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attribute name from Relationl and an attribute name

from Relation2.

The wunion of Relationl and Relation2 is the relation of
tuples that are in Relationl or Relation2, or both, with any
duplication removed and the attributes ordered in the

sequence given in the Attribute-pair List.
INTERSECT Relationl, Relation2 (Attribute-pair List)

The result of INTERSECTing two relations is a new relation

consisting of only those rows appearing in both relations.
DIFFERENCE Relationl, Relation2 (Attribute-pair List)

The result of DIFFERENCing two relations is a new relation
consisting of tuples that are in Relationl but not in Rela-

tion2.
CARTESIAN_PRODUCT Relationl, Relation2

The Cartesian Product of Relationl and Relation2 is the
relation of tuples that consist of combined attributes from

Relationl and Relation2.

2.1.6 Advantages of the Relational Data Model

The relational database model has many advantages over
other models <CODDl1l, MART1>, First, the relational model
provides the easiest and simplest way of representing data
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to database users by showing two-dimensional tables. Second,
relational database operations, such as project and join,
provide a great amount of flexibility by cutting and pasting
relations as users need them. Third, relations are flat
files; therefore, they are much less complex than tree and
network structures with pointers and linkages. Also, the
normalization offers more simplification of data storage;
therefore, it 1is easier to implement the relational data
model. Fourth, the relational model can easily achieve more
data independence than others whenever tuples are added or
deleted. If the database is in a normalized form, it can
grow or shrink without requiring existing application pro-
grams to change. Thus, the cost of maintaining those pro-
grams can be reduced. Fifth, security controls can be eas-
ily implemented by moving sensitive attributes into a
separate relation with its own authorization controls.
Sixth, the relational algebra or relational calculus can be
accurately applied to the manipulation of relations. How-
ever, logical data representations with directed links often
mislead users. Finally, the relational model can be effec-
tively implemented with current VLSI technologies such as
associative memories, intelligent secondary storage devices,

and multiprocessors.
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2.1.7 Disadvantages of the Relational Data Model and

Solution Approach

One disadvantage of the relational data model is often
attributed to machine performance. With conventional proces-
sors, the join operation is most likely to take substantial
machine time. When the sizes of relations are large (i.e.,
millions of tuples), performance may be drastically reduced
due to the conventional way of performing a join during
which machine time is proportional to the square of input
size. Physical structure of the data and techniques can be
selected to increase the speed of time-consuming and fre-
quently used operations such as the join, Therefore, the
performance of a relational database system 1is largely

dependent on the chosen physical techniques.

2.2 More about the Join Relational Database Operation

The join operation described previously has been called
"explicit join," in contrast to "implicit join" <SUl> which
involves an explicit join followed by a project operation
over the attributes of one of the relations. An explicit
join requires a relation to be formed explicitly by concat-
enating attributes and values of both relations, but an
implicit join can be performed by marking those tuples in
the relation over which the projection is performed. As a
consequence, the resulting relation 1is implicitly formed
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over the projected relation. The implicit join is similar to
what has been called "semi-join" in theoretical database
literature, Semi-joins <BERN1> are generally a more effi-
cient way of performing joins., If S <A 4 B> T is a join of
relation S and T over join attribute A and B, respectively,
with respect to a # comparison operator such as =, then it

can be equivalently processed by a semi-join as follows;

S <A # B> T = ((T <B>) <<B # A>> S) <A 4 B> T

the double parentheses signify semi-join.

According to the previous expression, join is actually
equivalent to the projection of the T relation on the join
attribute B, the semi-join of the resulting relation with
the S relation over the join attribute A, and the join of
the second resulting relation with the T relation. The join
operation is thus divided into the primitive operations such
as projection and semi-join so that the project and semi-
join operations provide reduction at an earlier stage.

This section explains the three major methods of imple-
menting the join: nested-loop, sort-merge, and hash join.
Because the new join method will be a hash-based join,
emphasis is placed on the following hash join methods: sim-

ple, GRACE, and Hybrid hash.
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2.3 The Nested-Loop Join Method

The nested-loop join method is the simplest among the
three major algorithms. The two relations involved in the
join operation are called the outer relation (or source
relation) S and the inner relation (or target relation) T,
respectively. Each tuple of the outer relation S is compared
with tuples of the inner relation T over one or more join
attributes. If the join condition is satisfied, a tuple of S
is concatenated with a tuple of T to produce a tuple for the
resulting relation R.

Considering the actual implementation of the nested-
loop join method, pages of tuples from both relations are
read from the secondary storage and processed in order to
reduce the I/0 time. A page corresponds to a physical block
of data such as a disk track. After the first page of the
outer relation S has been joined with K pages (where K is a
system variable such as the number of tracks in a cylinder)
of the inner relation T, another set of K pages of T are
read and compared with the same page of the outer relation
S. The join attributes of the outer relation S are then com-
pared with the join attributes of every tuple in the K pages
of the inner relation T. Concatenations of tuples are formed
in an output buffer if they satisfy the join condition.
Whenever the output buffer is full, the partial outcome of

the resulting relation R is recorded on the secondary stor-
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age. This process continues until all the pages of the
inner relation T have been joined with the page of the outer
relation S. At this time, the next page of the outer rela-
tion S is read from the secondary storage, and the process
of joining one page of the outer relation S with all pages
of the inner relation T is repeated. The algorithm termi-
nates when the last page of the outer relation S has been

processed.

2.4 The Sort-Merge Join Method

Each of the source (S) and target (T) relations is
retrieved from secondary storage, and their tuples are
sorted over one or more join attributes in subsequent phases
using one of many sorting algorithms (e.g., n-way merge).
After the completion of the sorting operation, the two
sorted streams of tuples are merged together. During the
merge operation, if a tuple of the source relation S and a
tuple of T satisfy the join condition, they are concatenated
to form a tuple of the resulting relation R.

This sort-merge join algorithm guarantees an acceptable
performance in most cases, as was proven by Blasgen and
Eswaran in 1977 <BLAS1>. Data statistics, such as the num-
ber of tuples to be joined or the number of values 1in one
column of a relation, heavily influence the performance of
the sort-merge algorithm. If the source and target relations
do not £fit into main memory, the performance will suffer
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considerably. In this case, a partial sort-merge join algor-
ithm can be applied <VALD1l, BITT1>. The partial sort-merge
join algorithm iteratively merges b runs of b**(i-1) pages
into a sorted run of b**i pages starting from i=1] where a
run is defined as an ordered sequence of elements. The value
of i is incremented for each successive iteration until all
elements have been processed and included in the b runs.
When a page is read for the first time, it is sorted using
an internal sort algorithm. The merge of b runs 1is com-
pleted by successively reading one necessary page or each
run into b input buffer and moving ordered tuples into the
output buffer which is emptied to the cache memory when the
output buffer is full, The sorting process is applied on
both source and target relations; the two sorted relations

are then joined by merging them,

2.5 The Hash Join Method

In this section, the general idea of the hash join
algorithm is explained, followed by the issue of limited
main memory size. As described in DeWitt's paper <DEWI3>,
this section illustrates how the three major hash join meth-
ods, namely the simple hash join, GRACE hash join, and
Hybrid hash join overcome the 1limitation of real memory

size.
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2.5.1 General Approach of Hash Join

In the straightforward hash join algorithm, the source
and target relations, which we call S and T, respectively,
are read from the secondary storage. The join attribute val-
ues of the source relation are first hashed by a hash func-
tion. The hashed values are used to address entries of a
hash table called buckets. If the same hash function used
for the join attribute value of the target relation |is
hashed to a non-empty bucket of the hash table, and one of
the join attribute values stored in that bucket matches with
the value, the equi-join condition is satisfied. The corre-
sponding tuples of the source and target relations are con-
catenated to form a tuple of the resulting Trelation, or a
pair of tuple identifications are retrieved from the bucket
and are used to fetch the corresponding tuples. The process
continues until all the tuples of the target relation have
been processed. The accumulated tuples of the resulting
relation are output to the secondary storage as the output
buffer is filled.

This algorithm works best when the hash table for the
source relation fits into real memory. When most of a hash
table for the source relation cannot fit into real memory,
this straightforward hash join algorithm can still be used
in virtual memory, but it performs poorly since many tuples

cause page faults. The three hash join methods described by
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DeWitt <DEWI3> also take into account the possibility that a
hash table for the source relation will not fit 1into main

memory.

2.5.2 Simple Hash Join

If a hash table containing all of a source relation S
fits into memory, the simple hash join algorithm is identi-
cal to the straightforward approach described above. When
available real memory is not adequate, the simple hash join
scans the (smaller) relation S repeatedly, partitioning off
as much of S as can fit in a hash table in the memory. 1If
the join attribute hashes into the chosen range of the hash
table, the tuple 1is inserted into the addressed bucket of
the hash table in main memory; otherwise, the tuple is writ-
ten to a source file on disk. After completing this opera-
tion, the algorithm scans target relation T, which is sup-
posedly larger than S, and computes a hash value of each
join attribute. Again, if the hash value is in the chosen
range, the algorithm compares the join attribute with that
of S tuples in memory for a match. I1f the equi-join condi-
tion is satisfied, the tuples are concatenated and written
to disk; otherwise, the T tuple is written to a target file
on disk. Finally, the algorithm replaces relations S and T
by the source and target files on the disk respectively and
chooses another range; it then repeats the above steps until
there are no more tuples in the source file.
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2.5.3 GRACE Hash Join

The GRACE hash join is characterized by a complete sep-
aration of the partition phase and the sorting phase. The
partition phase chooses a hash function h and creates only
as many buckets from the source relation S as are necessary
to ensure that the hash table for each bucket Si will fit
into the real memory (assuming that a single block of memory
is allocated as an output buffer for a bucket). Each tuple
of S is scanned, hashed, and placed in the corresponding
output buffer. When an output buffer is filled, the accumu-
lated tuples in it are written to a file referred to as sub-
set Si on disk. After all tuples of S have been completely
processed, all output buffers are flushed to the disk. Then,
the target relation for T is processed in the same way as it
was for S. If the number of buckets equals N, the N subset
files for S and the N subset files for T are written onto
the disk.

During the second phase of the GRACE hash join algor-
ithm, the actual join is performed, executing a sort-merge
algorithm on each pair of subset files produced in the par-

tition phase.

2.5.4 Hybrid Hash Join

The final type, the Hybrid hash join algorithm, does
both partitioning and hashing on the first pass over the
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source (S) and target (T) relations. All partitioning is
completely finished in the first stage. While this feature
is similar to the GRACE algorithm, it is different from the
simple hash join algorithm. However, this feature differs
from the GRACE method in that the Hybrid algorithm uses any
additional available memory during the partitioning for a
hash table that is processed at the same time that S and T
are being partitioned, while reserving only the blocks nec-
essary to partition S into buckets that can fit in real mem-
ory.

The first step of the Hybrid algorithm is to choose a
hash function and set up both buffers and a hash table by
allocating necessary blocks of memory. After the i-th out-
put buffer block is assigned to Si, for i =1,...,n, each
tuple of S is scanned and hashed with the chosen hash func-
tion. If a tuple has the address S0, it is placed in the
hash table in the real memory. Otherwise, the tuple is moved
to the Si output buffer block. Once finished, there is a
hash table for SO in main memory, and there are S1, ..., Sn
files on disk.

Each tuple of the target relation T is scanned and
hashed with the same hash function used for S. 1If the tuple
has the address T0, the hash table is searched for a match.
If there is a matched source tuple, the resulting tuple is
stored. Otherwise, the target tuple 1is discarded. If the
tuple does not have the address TO, it belongs to Ti for
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some i > 0, so the tuple is moved to the i-th output buffer
block. After this step, the subset files S1, ..., Sn and T1,
..., Tn are written on disk.

Then, for i = 1 to n, the Hybrid algorithm repeats the
process of reading Si while creating a hash table at the
same time and scanning Ti for a match to determine if the
tuple is to be included in the resulting relation or to be

discarded.

2.6 Discussion

When the number of tuples in the source relation (the
smaller relation) 1is S, the number of tuples in the target
relation (the larger relation) is T, and the number of
tuples in the resulting relation is R, then the time com-
plexity of nested-loop join algorithm is O(S*T), and the
time complexity of the sort-merge algorithm is O((S+T) 1log
(s+T)), which is O(N log N). Considering only the time com-
plexities, the sort-merge join may outperform the nested-
loop join. However, as mentioned before, if a suitable index
exists, a nested-loop can be a choice as well according to
Blasgen's analysis <BLAS1>,.

For parallel join operations, Bitton and his research
colleagues analyzed parallel sort-merge and parallel nested-
loop join algorithms and concluded that, when the sizes of

the two relations to be joined are approximately the same,
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the parallel sort-merge algorithm is superior to the
parallel nested-loop algorithm <BITT1>. Furthermore, the
authors added that when one relation is 1larger than the
other, the parallel nested-loop algorithm is faster.

To derive an asymptotic time complexity for a simple
hash join algorithm, the number of buckets (B) in a hash
table and the number of buckets 1in a divided hash range (D)
are also considered in addition to S, T, and R. The time
complexity of the hash join algorithm 1is represented as
O((sS+T)B/D + R). 1In proportion to cheaper main memory cost,
more memory space becomes available; consequently, the num-
ber of repetitions for hashing process (B/D) are reduced
since the value of D gets larger. Therefore, the time com-
plexity for the hash join algorithm can be simplified as
O(S+T+R). Assuming that R is relatively smaller than S+T, it
becomes O(S+T). Since S+T is actually the total number of
the input tuples(N), the time complexity can be represented
as O(N).

Considering actual performances, it 1is hard to rely
only on asymptotic complexity analysis to measure the speed
performance because of I/0 time, communication overhead, and
a number of accesses to the secondary storage are also
needed for a more accurate analysis.

Shapiro <SHAP1> and Schneider <SCHN1> analyzed simple,
GRACE, and Hybrid hash join algorithms. They concluded that
with respect to speed, when the relations are considerably
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large, the Hybrid hash join algorithm is the most efficient
of the algorithms discussed above. The hash-based join
algorithm requires a large main memory; however, when suffi-
cient main memory is affordable, the hash-based join has the

greatest advantage.
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CHAPTER 3

SURVEY OF HASH FUNCTIONS FOR IMPLEMENTING

AN EFFECTIVE HASH CODER

During the 1970's and 1980's, implementing a powerful
sorter in computer hardware was a challenging topic. An
effective sorting engine can be used in many different
application areas which require heavy comparative sorting
processes. Whenever a specific function, algorithm, or task,
that is repeatedly used, takes a 1long process time, it is
important to think about implementing a piece of hardware to
do the job faster. Since computer hardware has become much
less expensive than in the past, many of these ideas regard-
ing implementing new pieces of hardware have become more
feasible.

These days, distributive sorting by a hash function is
popularly used in many applications; therefore, there has
been an increasing demand for an effective hash coder. 1In
these database applications, an effective hash coder with an
efficient hash function 1is essential to increase the speed
of the hash-based join operation. Since the hash coder is
the major component in the database filter coprocessor, it
should be effectively implemented in hardware in order to
hash database tuples at an increased speed.

This chapter will discuss the major objectives in
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designing a hash coder for use with a join operation. In the
second section of this chapter, the experimental environ-
ment, including the encoding scheme, data sets, the measure-
ments of distribution, speed, and cost are described. The
third section describes four new hash functions and current
hash functions, In addition, an analysis of the critical
aspects of each hash function is provided in the fourth sec-
tion of this chapter. Finally, a new hash function, named
mapping hash, has been chosen as the hash coder which is

implemented in hardware for relational database operations.

3.1 Objectives in Designing a Hash Coder for Use with a Join

Operation

The main objectives of a hash function are summarized
by Knuth <KNUT1>., Knuth's requirements for a good hash func-

tion include the following:

1) computation should be very fast;

2) collisions should be minimized.

The first requirement is crucially important in this data-
base application since the number of join attributes the
hash coder has to transform into hash addresses may be
large. The hash coder constitutes the major component of a
database filter that strains out irrelevant tuples trans-

ferred from the secondary storage devices. Within the fil-
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ter device, the hash address calculation per each join
attribute often is a main cause of time consumption.

Knuth's second requirement for minimizing collisions
implies that a good hash function should provide a good dis-
tribution performance. Considering the hash-based join
algorithms described in section 2.3, if join attributes are
uniformly distributed into the buckets in the buffer, the
number of accesses to the secondary storage used to write
tuples in a bucket to a subset file can be reduced. Since no
hash function can distribute an equal amount of keys in each
bucket, it becomes necessary to compare the distribution
performance of any new hash function with currently accepted
hash functions such as division and multiplicative hash
methods. Knuth says that even though many hash methods have
been suggested, none has proven to be superior to the simple
division and multiplicative methods <KNUT1>., His conclusion,
based on Lum and his colleagues' experimental results
<LUM1>, was generally accepted as true until very recently.

According to this survey of hash functions, distribu-
tion performance of some hash functions might show a data
dependency problem. In other words, when keys are similar, a
data dependent hash function has a larger chance of colli-
sion occurring. For example, by using the division method
algorithm, keys such as 'contractl,' 'contract2,' 'con-
tract3' probably will be distributed into buckets next to
one another. This phenomenon can be described as data clus-
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tering due to the data dependency of the division method. To
detect the data dependency, each hash method should be
applied both to the data set, which contains many similar
keys, and to the data set, which contains many random keys,
while the number of buckets should be sufficient, i.e., at
least several hundred buckets. If there is a distinguisha-
ble difference 1in the two distribution performances of a
hash method, the hash method may have a data dependency
problem,

When a hash coder is implemented in software, require-
ments for a hash coder are the same as those for a good hash
function, as discussed above. On the other hand, when a hash
coder is implemented in hardware, in addition to the
requirements for a good hash function, the requirement of
low cost should be satisfied for an acceptable hash coder.

The biggest advantage of a hardware hash coder might be
speed performance. This advantage, however, is largely
dependent on the kind of hash function chosen. Some hash
functions can be accelerated by means of hardware aids; how-
ever, others gain relatively little speed even though they
cost much more. Since a hardware hash coder will be used
more and more in future application areas, it is important
to determine which hash function fits well into a hardware
implementation in terms of both speed and cost, while pro-
viding a relatively good, data-independent distribution per-
formance.
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The requirements suggested for an effective hash coder

implemented in hardware can be summarized as follows:

1. Extremely fast hash address calculation
(i.e., a few clock cycles)

2. Relatively good distribution performance

3. Data-independent distribution

4, Low cost in implementation

Since most of the currently well known hash functions
receive an input number and produce another number repre-
senting a bucket, an encoding scheme is required in order to
convert the character string of a key to an input number.
Therefore, their hashing techniques are reminiscent of pseu-
do-random number generating techniques <KNUT2> which receive
an input number and produce another number. For a fast
address calculation, unnecessary serial encoding schemes
have to be avoided if it is found that the process of encod-
ing one key to another short form slows the computation.
Nonetheless, when a key is long and encoding is unavoidable,
the hardware encoding scheme, such as arrays of exclusive-OR
gates that look like a downward binary tree, can be used.

Another factor to consider is that if the hash address
is represented with K bits, the number of buckets in a hash
table is 2**K, Therefore, if the circuitry for a hash func-
tion involves a sequential network, requiring tedious serial
computations, the first requirement cannot be satisfied.
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Moreover, if the sequential network for a hash function, has
a series of complex operations and is replaced by a combina-
tional network, then the cost of the hardware hash coder may
be increased. However, if the algorithm of a new hash func-
tion can be processed using only a combinational circuit,
then a hash address can be generated within a few clock
cycles.

Among the current hash functions, folding and digit
analysis are the hash methods that inherently fit well in a
combinational network. Most other hash functions require
sequential circuits by nature. However, Lum states that
both folding and digit analysis are erratic <LUMl1>. Maurer
<MAUR1> and Knott <KNOT1> suggest that the folding method
should be combined with a shift operation(s) in order to
improve the distribution performance. However, this fold-
shifting hash method may take more time than folding alone.
The digit analysis hash method, on the other hand, 1is in a
different category which requires that the specific data set
should be analyzed beforehand to select digits; therefore,
further discussion of this method is not necessary at this
moment. Maurer stated that the fold-shifting method is prob-
ably the fastest, followed by the division method. The
principle behind all these fast hashing techniques 1is that
folding using exclusive-OR, shift, and negation are fast and
useful operations for generating hash addresses.

In section 3.3, four new hash methods are introduced.
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The mapping hash method is the one developed by the author,
and two other hash methods, fold-shift-loading and Hu-Tucker
code methods, were developed by professors Maurer and Berko-
vich at the George Washington University, respectively. In
this section, several different versions of the fold-shift-
ing method are designed by the author and introduced. In
the end, this dissertation will show how the mapping hash
method satisfies all the requirements of a good hash coder

that have been illustrated above.

3.2 Experimental Environment

The form of hashing considered in this survey is open
hashing which provides a potentially unlimited space for
each bucket in a hash table. In this hashing scheme, each
bucket in the hash table may contain a pointer to a linked
list.

This experiment assumes that records (or tuples) with
keys (or join attributes) are moved from a sequential file
in the secondary storage to a buffer memory: the keys are
hashed by a chosen hash function, and each record is stored
into a corresponding bucket in a hash table in the main mem-
ory. When the bucket is filled, the accumulated records are
written to the corresponding subset file in secondary stor-
age. In this environment, lookup time--the time to look up

a record on the main memory--is relatively fast compared to
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the hash address calculation time. Under these
circumstances, the speed performance of a hash function is
an important criterion in comparing various hash methods.

Three kinds of data sets are used to compare the per-
formance of hash functions. Keys in these three data sets
consist of 16 identifiable characters; they are left justi-
fied and are space character filled. 1In this experiment for
a survey of hash functions, a key consists of 16 ASCII char-
acters, which 1is an acceptable size for the keys wused in
most of the database applications. The first data set
includes 1,024 generally or arbitrarily chosen persons'
names with 16 characters. In this data set, there are dozens
of groups of people having the same last name. The second
data set contains 1,024 persons' names, randomly chosen from
the phone book, depending on the row, column, and page num-
ber, generated by a pseudo-random number generating func-
tion. The third data set has 1,024 numbers with 16 numeric
characters, which are generated by the same function. 1In
this last data set, every key consists of only numeric char-
acters such as '0,' '1l,' ..., '9.'

Each character 1in the data sets is internally repre-
sented by its corresponding ASCII code. Although this code
uses seven bits, most of the computers have eight bits for a
byte or a character. Therefore, the left most bit always has
zero value in the ASCII code. It is assumed that 16 charac-
ters in the ASCII code are initially stored in a four-word,
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or 16-byte, key register. If the ASCII code character string
is considered as a number, it may be too large for some hash
functions to calculate. Therefore, in this survey, an encod-
ing scheme is used for hash functions such as algebraic cod-
ing, digit analysis, division, folding, midsquare, multipli-
cative, radix, random, and the author's fold-shifting(FS).
On the other hand, hash functions such as Maurer's shift-
fold-loading, Berkovich's Hu-Tucker code, the author's map-
ping, and Pearson's table indexing do not use encoding
schemes.

There are many encoding schemes that one can use with a
hash function. If a key is encoded into one word, most of
the existing hashing function can be directly applied. As
Maurer suggests <MAUR1>, if keys are longer than one com-
puter word, each word in a key can be folded to the next one
consecutively, taking the exclusive-OR. 1In other words, the
highest bit of the first word of the key is exclusive-ORed
with the highest bit of the second word of the key. The
resulting highest bit is again exclusive-ORed with the high-
est bit of the third word of the key. Then the resulting
highest bit is exclusive-ORed with the highest bit of the
fourth (last) word of the key in order to produce the high-
est bit of the encoded word. The same process is applied to
all other bits 1in parallel because the exclusive-OR opera-
tion is taken word by word. Because this encoding scheme is
fast and easily implemented in both hardware and software,
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it merits attention.

Since this treatise focuses on a fast hardware oriented
hash function, calculated hash addresses should be repre-
sented with the values of the address bits--8 address bits
in this case. The number of buckets in the hash table is
256, 2 to the power of 8. Considering that a l6-character
key is composed of 128 bits, 1i.e., 16*8 bits, which are
input to a hash function to produce eight bits for a hash
address as an output, the encoding scheme that uses folding
with exclusive-OR operations can be efficiently and easily
implemented. The choice of 256 for the number of buckets in
a hash table provides fairness for both hardware- and soft-
ware-oriented hash functions as indicated by a comparative
analysis of their performances.

The purpose of this survey of hash functions is to pro-
vide the performance evaluation of the current and new hash
methods clearly and concisely so that, based on the results
in this survey, one can make an informed decision in select-
ing a hash function for his application. As mentioned in the
previous section, the performance of a hash function can be
expressed in terms of distribution, speed, and cost when the
function is implemented in both hardware and software. As
the barometer of distribution performance, mean square devi-
ation is selected. Each hash method is executed on the three
data sets to produce mean square deviations to show its dis-
tribution performance. The smaller the mean square devia-
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tion, the better the distribution and the fewer incidences
of collision. Since the number of buckets in the hash table
is 256 (2**8), and since 1024 keys are hashed with a uniform
distribution, each bucket will contain four tuples--the

mean. The formula of the mean square deviation is:

( :‘:1 (Ni - M)**2) / x
i=0
Ni : the number of tuples in bucket i
x : the number of buckets (e.g., 256 (2**8))
M : mean value (e.g., (Eii Ni)/x = 1024/256 = 4)
i=0
It should be noted that the executional speed of most
hash functions will be faster when the hash coder is imple-
mented in hardware as compared to software. Thus, two speed
performances should be determined: one for a software imple-
mentation and the other for a hardware implementation.
First, when a hash function is implemented in software,
execution time 1in clock cycles can be calculated by hand.
The overall execution time for an instruction may depend on
the overlap of the previous and following instructions.
Therefore, in order to calculate an estimate of instruction
execution time, the entire code sequence of a hash algorithm
is analyzed as a whole. Because the host processor of the
HIMOD database computer uses an MC68030 microprocessor, the

actual instruction-cache case execution time for an instruc-

tion sequence of a hash algorithm can be derived using the
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instruction-cache case times listed in the tables of the
MC68030 User's Manual <MOTOl>, The instruction-cache case
time for most instructions is composed of the instruction-
cache case time for the effective address calculation over-
lapped with the instruction-cache case time for the opera-
tion. The overlap time should be subtracted from the address
calculation time for the entire sequence as shown in formula
in the MC68030 User's Manual <MOTOl>. The formula is used
in every calculation of the whole execution time that is
taken to produce a hash address.

Second, it should be noted that when a hash function is
implemented in hardware, the execution time in the clock
cycle is calculated for each hash function based on the
following considerations: the hardware hash coder may simply
consist of a number of gates, and the average gate (tran-
sition) delay time for a signal to propagate from input to
output through a gate is referred to as propagation (or
gate) delay. On the MC68030, the gate delay time is speci-
fied as a maximum nine nanoseconds in Motorola's HCMOS
(High-density Complementary Metal Oxide Semiconductor) tech-
nology, and with 20.0 MHz clock frequency for the processor
speed, a clock pulse width becomes 50 nanoseconds (MC68030
processor's speed is beyond 20 MHz). Therefore, if a circuit
component of a hash coder has a number of gate levels (L)
less than or equal to 5 (i.e., L < clock pulse width/gate
delay = 50/9), then the signals can travel from the inputs
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of the circuit to its outputs within a clock cycle.

Third, it should be noted that the cost of a hardware
implemented hash coder is calculated simply by counting the
number of gates wused in the coder. Each flip-flop used in
either a register or elsewhere is counted for two gates.
The gates used for the key register which is provided to all
hash methods are not included in the number of gates used in
the hash coder. If any other device or local memory is
used, it is specified in addition to the number of gates by
using a postfix mark.

Some hash functions use time-consuming multiplication
and division operations. Thus, there is a need for a fast
multiplier and divider. A fast modular array multiplier
<WALL1, CAVAl> by means of nonadditive multiply modules
(NMMs) and bit slice adders, known as Wallace trees, can
save time in multiplication compared with an ordinary
sequential add-shift multiplier consisting of registers, a
shift register, and an adder. A carry lookahead adding divi-
der also substantially increases the speed of a division
operation in comparison to the speed of a sequential shift-
subtract/add restoring/nonrestoring divider. Hardware organ-
izations of the above multipliers and dividers are explic-
itly explained in the referenced articles and book <WALL1,
CAPPl, STEFl, CAVAl>, These fast multipliers and dividers,
however, are quite expensive. Since there are speed versus
cost trade-offs, any judgement regarding adaption must be
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made thoughtfully. For that reason, the gates of these
options also are reflected in the costs of a hash coder in
order to help a computer designer make the best decision.
According to this survey of hash functions, key-to-ad-
dress transformation methods are evaluated without weighing
other factors such as overflow storage or handling schemes,
loading factor (the ratio of the number of records to the
number of record slots which are units of storage space that
can hold one record), bucket size (the number of records
that can be accommodated 1in a location calculated from a
transformation), and insertions and deletions, owing to the

environment of the database application.

3.3 Description of New and Current Hash Functions

3.3.1 Maurer's Shift-fold-loading Hash Method

Maurer's shift-fold-loading hash method 1is a hardware-
oriented system. The three primary operations in this hash
method are shift (or rotate) right, exclusive-OR, and load
into a register. All three are relatively fast operations.
A key register contains bit information of a whole key. It
is the same size register as the key register for fast shift
operations, and a number of exclusive-OR gates (one gate for
each bit in the key) are required in the hash coder.

Initially an input key exists in both shift and key reg-
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isters. The shift register will rotate the bit contents one
bit to the right; therefore, the rightmost bit will be
stored in the leftmost bit in the shift register. Then every
pair of bits that are in the same position as the key and
the shift registers are exclusive-ORed together. Finally,
the resulting bits are loaded into both the shift and the
key registers.

The algorithm is:

EX-OR (ROT-R(N, 1))

EX-OR (ROT-R(N, 3))

oo
L}

zZ2 2 zZ ZzZ ZzZ 2z =z
[
zZ =z Z =z =z =z Z

EX-OR (ROT-R(N, 7))
EX-OR (ROT-R(N, 15))

EX-OR (ROT-R(N, 31))

EX-OR (ROT-R(N, 63))

"

EX-OR (ROT-R(N, 127))

where the statement 'N := N EX-OR (ROT-R(N, K))'

assigns the resulting value from exclusive-OR of

both intermittent value (N) and K bits rotated

value of N back to the intermittent value.

As specified in the algorithm in the second rotation,
all the bits in the shift register are rotated three bits
right, and exclusive-ORing and loading follows by the same
method as described above. Then the algorithm rotates seven
bits right, while performing the same exclusive-ORing and
loading once again. It then rotates another 15 bits right

and repeats the process. After that, the same process for
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31, 63, and 127 bits is duplicated in order.
The numbers of bits (Ki) being rotated right each step

are determined by the following method.

1

Kl =2 -1-=1
2

K2 =2 -1-=3
3

K3 =2 -1=17
4

K¢ =2 -1=15
5

K6 =2 -1= 31
6

K6 =2 -1 = 63
7

K7 = 2 -1 =127 < 128 (N : Number of bits in a key)

If there are N bits in a key, log N numbers of shift, exclu-
sive-OR and load operations are required, since Ki = 2%*%*j -

1l <N (i > 1), Therefore, 1 <= i <= log N,

3.3.2 Berkovich's Hu-Tucker Code Hash Method

In Berkovich's Hu-Tucker code hash method, the Hu-
Tucker variable length code <KNUTl>, as shown in Figure 3-1,
is used. Converting each character in a key to its corre-
sponding Hu-Tucker code and storing the binary string of the
code for each character, the Hu-Tucker code string for the
whole key is accumulatively created, character by character.
For example, the Hu-Tucker coded value of the key 'ABC' is
'0010001100001101.' In the conversion process, the string

size of a code for each character must be added to provide
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the total number of bits in the final string of the code.

This resulting string of bits is partitioned into substrings

which are the same length as a
substring might be shorter, but
These substrings are folded one by

OR. The bits in the resulting

address.

SPACE : 000 n,
a, A : 0010 o,
b, B : 001100 P,
c, C : 001101 d,
d, D : 00111 r,
e, E : 010 s,
£, F : 01100 t,
g, G : 01101 u,
h, H : 0111 v,
i, I : 1000 w,
j, J ¢ 1001000 X,
k, K : 1001001 Y,
1, L : 100101 z,
m, M : 10011

Figure 3-1. Hu-Tucker

hash address. The last
it is filled with zeros.
one by taking exclusive-

string represent a hash

1010
1011
110000
110001
11001
1101
1110
111100
111101
111110
11111100
11111101
1111111

NKNMELCHANDOUTOZ

Codes <KNUT1>

The idea behind this hash method may be described as

the variable length and irregular

pattern of the Hu-Tucker

code, for each character helps randomize the bit values of a

hash address when the fixed length

3.3.3 Mapping Hash Method

The mapping hash function is
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hash method that

converts

or maps the internal

representation, e.g., ASCII code, of each character in a key

to an arbitrarily chosen prime

number) in parallel,

using arrays

binary form and, once again, in a parallel manner.

function extracts K bits from the

produce a hash address for the
In this hash method, the

have inherent irregularity are

character. For instance, the
'A'" and 'B' are different in
However, this kind of

alphabetic and numeric characters

the value for a hash address.

and then

of exclusive-OR gates

similarity in

number (or a randomly chosen
folds these prime numbers
to produce a number in
Then the
binary number in order to
hash table of 2**K buckets.
nature of prime numbers that
used to randomize each ASCII
ASCII codes of the characters
eight bits.

only one out of

ASCII code for both
does not help randomizing

Therefore, whenever a charac-

ter is converted into a prime number, the similarity between

ASCII codes of the characters in a key disappears. More-

over, when these prime numbers are compressed or folded into

a number, this number must be randomized sufficiently.

Through the folding process of prime numbers, the different

values in one character position of two similar keys will

produce two totally irrelevant hash values. In other words,

the prime number for the different character in the second
key affects all bits of the hashed value of a key due to the
exclusive-OR operation. Therefore, in the final exclusive-OR
process, the whole bits of hash value are completely hashed
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by the character.

One of the characteristics of this hash method occurs
when this hash function is implemented in hardware: a hash
address can be calculated within a few machine cycles by
means of parallel processing. The mapping hash coder
requires hardware components, for example, sixteen 64%*16
bits ROMs (one ROM for each character) or RAMs and eight
exclusive-OR or EX-OR modules (120 exclusive-OR gates in
total) as shown in Figures 3-2 and 3-3.

In each ROM, 64 (2**6) the arbitrarily selected prime
numbers are stored. (Each ROM may contain 128, 32, or 16
prime numbers if a user chooses 128*16, 32*16, or 16*16 ROM
respectively.) A set of all 16 ROMs is included in the
hardware mapping hash coder. The contents of all 16 ROMs
are different. In this hash coder, only the least signifi-
cant six bits of an ASCII character are used as an input
address to the corresponding ROM, since the 7th bit 1is
always 'l' for alphabets and always '0' for numerics, and
the 8th bit is not used in the ASCII code. Therefore, each
ROM contains only 64 words of prime numbers, which are
addressed by the least significant six bits of the ASCII
code for the corresponding characters in the key. When the
least significant six bits of each ASCII character code
select a prime number in a corresponding ROM, the 16 prime
numbers for 16 corresponding characters in a key are exclu-
sive-ORed together to produce a hash address in parallel.
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Figure 3-2. The Hardware Mapping Hash Coder

As shown in Figure 3-2,

numbers are exclusive-ORed together

bit of a hash address.

the 16 prime numbers are exclusive-ORed together producing

the second bit of the resulting hash address. All other bits

Simultaneously,
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Figure 3-3. EX-OR Module for a Hash Address Bit

of a hash address also are constructed at the same time.
The circuit of EX-OR Module for each bit shown in Figure 3-2
is represented in Figure 3-3.

As shown in Fiqure 3-2, while the first bit of a hash

address is being calculated, the other bits are also being
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computed through the four levels of exclusive-OR gates in
parallel. The concurrent processing in looking up random
numbers and in bit calculations for a hash address makes
hash address computation remarkably fast. The major opera-
tions in this hash method are indexed memory read and exclu-
sive-OR. These operations also are time-saving operations.

The conversion of an ASCII character to a prime number
is a useful aid in randomizing the value of bits. It is,
however, necessary to be cautious about designating the
least significant bit of every prime number 'l,' since prime
numbers are odd numbers. Consequently, the resulting least
significant bit, designated '0,' should be excluded in form-
ing a hash address. It may be possible to remedy this pro-
cess by adding one to the prime numbers of all even number
addressed words in every ROM. If such additions are made,
then the resulting first bit might be adequately randomized
in order to be included in composing the bits for a hash
address.

By using available instructions, this hash method also
can be implemented in software. The algorithm of this hash
method in a Pascal-like notation is shown in Figure 3-4.
The programming language of Pascal provides an ORD function
which converts a character to a corresponding ASCII integer
number. In the algorithm, only the six least significant
bits of the ASCII numbers are used as indices to the table
containing 64 (= 2**6) prime numbers. The following state-
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ment in the algorithm, "Temp := EX_OR (Prime_Table (Index),
Temp);" performs exactly the same function that the hardware
implemented mapping hash method does. The validity of this

assertion will be further demonstrated in this section.

const
MAX_NO_CHARS_IN_KEY 16; {number of chars in a key}

MAX_NO_BUCKETS = 256; {no. of buckets in hash table}
NO_ PRIMES IN_ROM = 64;

type
{Type for the array of 16 characters key}

Key_Array_Type = array (l..MAX NO_CHARS_IN_KEY)
of char;

var
{Array table of 64 prime numbers for each ROM}

Prime_Table : array (1. +MAX NO_CHARS_IN_KEY,
0..NO_PRIMES IN_ROM-1) of integer;

function Mapping Hash (Key : Key_Array_Type) : integer;

var
Temp, Char_No, Index : integer;

begin

Temp := 0;

for Char_No := 1 to MAX NO_CHARS_IN_KEY do

begin

Index := ord (Key(Char_No));
if Index >= NO_PRIMES IN ROM then

Index := Index - NO PRIMES IN_ROM;
Temp := EX OR (Prime_Table(Char_No, Index) Temp) ;

end;
Mapping_nash ¢= Temp mod MAX NO_BUCKETS;

end;

Figure 3-4. Mapping Hash Algorithm

If the Exclusive-OR (EX_OR) function is explained in
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high level terms, it receives two integer numbers to be
exclusive-ORed, which then converts them to two strings of
1's and 0's, and takes the exclusive-OR on the bits of the
same position in the two strings. Then the mapping hash
method converts the resulting binary string back to integer
output to be sent to the calling program. In hardware imple-
mentation of this mapping hash method, the exclusive-OR
operation is more valuable than the addition operation since
the exclusive-OR operation does not generate a carry-out
bit. Should anyone implement this hash function in a high
level 1language while disregarding speed, the following
statement can be used: "Temp := Prime_Table(Char_No,Index)
+ Temp;" in place of the statement: "Temp := EX OR
(Prime_Table(Char_No,Index), Temp);" This hash method is
referred to as the author's additive mapping hash method,
and gives as good a distribution performance as the mapping
hash method, as shown in section 3.4.

With the last statement, the time-consuming mod opera-
tion that provides a remainder after a division, is not nec-
essary if the least significant K bits from the sum or the
combination can be extracted in order to produce a hash
address for the table of 2**K buckets. This alternative
method is acceptable, since the sum or the combination in
the variable Temp is already adequately randomized.

The assertion that parallel processing with exclusive-
OR gates, as shown in Figures 3-2 and 3-3, has the same
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effect with serial processing as it does with exclusive-OR
operations as shown in Figure 3-4 remains to be proved. In
other words, taking serial exclusive-ORs on 16 prime numbers
ensures the same result of collecting all bits in the same
bit position of 16 prime numbers, by taking exclusive-ORs in
parallel passing through the EX_OR module, as shown in Fig-
ure 3-3, and then producing resulting bits from EX_OR module
for a hashed value. It is easier to understand this process
if one considers how the first resulting bits in the serial
and the parallel processing cases are produced, as well as
how their results are the same. If '®' is understood to rep-
resent exclusive-OR operation on two input bits, and X1 is
the first bit of the first prime number, then X2 1is the
first bit of the second prime number, and so on. As a
result, Xi is the first bit of the i-th prime number. The
assertion to be proved can be expressed with the following

equation:

(((X10X2)®(X30X4))®( (X50X6)0(X76X8)))®
(((X90X10)®(X116X12))e((X130X14)8(X150X16)))
is equal to (=)

g(( ((X19X2)®X3)®X4 )®X5)0X6)OX7)8X8)®

(e ((
X9)9X10)®X11)©exX12)®X13)9X14)HX15)8X16

The left-hand side of the equation represents how the paral-

lel exclusive-ORs on the first bits are taken from the 16

prime numbers. The right-hand side of the equation repre-
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sents how the serial exclusive-ORs on the first bits are
taken from the 16 prime numbers. By using the associative
law of exclusive-OR, such that (XeY)®Z = X&(Y®Z) = X&Y®Z,

one can simplify the right-hand side as follows:

R.H.S. =
X1OX20X30X4OX5OX6BX7TOX8OX90X1 00X1160X1 20X1 3@X140X156X16

Thus, the equation to be proved becomes:
(((X10X2)0(X30X4) )®( (X56X6)B(X70X8)))®
(((X90X10)®(X118X12))®O( (X13®X14)®(X15€X16)))

is equal to (=)

X10X20X 30X 4OX5OX6PX7OX8OX9O6X1 09X116X]120X]1 3@X14BX150X16

Once again, the associative law of exclusive-OR is used

in order to accomplish the following steps:

L.H.S.

(((X16X2)®(X30X4))®((X58X6)®(X7®X8)))®
(((X90X10)®(X116X12))®( (X13®X14)®(X156X16)))
((X19X26(X30X4) )O(X50X60(X70X8)))e
((X99X100(X116X12) )0(X130X140(X156X16)))

by the associative law (X®Y)®Z = X&Y®Z

= ((X10X20X30X4)D(X50X60X70X8) )&
((X96X100X116X12)®(X130X140X150X16))

by the associative law X®&(Y®Z) = X&Y®Z

= (X19X20X30X46(X50X69X70X8) )
(X90X100X110X120(X136X146X156X16) )

by several uses of the associative law (XeY)®Z = X0Y®Z
= (X19X20X30X4OX50X60X70X8)®
(X90X106X110X1260X130X140X156X16)
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by several uses of the associative law X&(¥®Z) Xeyez

= X1OX20X30X4BX50X60X70X8e
(X90X1060X116X126X130X140X156X16)

by several uses of the associative law (x0Y)07 XoYez

= X10X26X30X4DX50X60X70X8®
X96X100X110X120X1386X1406X158X16

Xeyez.

by several uses of the associative law (X®Y)®Z

As this method demonstrates, the first resulting bits
of parallel processing and the first resulting bits of
serial processing have the same bit value. This is true of
all other resulting bits of parallel and serial processing.
Therefore, it is verified that the hardware-implemented map-
ping hash coder in parallel processing, and the software-im-
plemented mapping hash coder in serial processing, produce
the same hash address if they receive an identical key when
they functionally use the same hash address calculation

method.

3.3.4 The Algebraic Coding Hash Method

Each digit of a key is regarded as a polynomial coeffi-
cient in the algebraic coding hash method <MAUR1l, LUM2>. If
a key is n digits (or bits) long, the degree of the polyno-
mial becomes n-1. For example, the key 247935 is translated
as 2X**5 + 4X**4 + 7X**3 + 9X**2 + 3X + 5 which is the poly-
nomial of degree 5 (n=6). In order to produce a remainder,
the polynomial is divided by another constant polynomial of
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degree m-1 (m<=n). The coefficients of the remainder, which
is the polynomial of degree p (p<=m-1), form a hash address.

This method of key transformation is organized accord-
ing to the theory of error-correcting codes. Hanan and Pal-
ermo <HANAl> applied the theory of Bose-Chaudhuri codes to a
hashing technique. In their method, the key and addresses

are represented as polynomials such as:

n i-1 i-1

n
K(x)=:a_x , R(x)=:p.x

1=1 1 i=1 1

If 'a' represents a primitive element of Galois Field

GF(2**q), the one must consider the polynomial

g(x) = (x-a)(x-a**2)...(x-a**(d-1)) = Z:: g x,

where d <= D (D : distance)

The Bose-Chaudhuri theorem <HANAl> states that R(x) 1is the
remainder of the division of K(x) by g(x); that is, given
that K(x) = Q(x)g(x) + R(x), degree of R(x) <d -1, then
the minimum distance between two keys producing the same R
is at least d. According to this theorem, all keys, which
are at a distance of D, or less, apart, have distinct
remainders--that is, distinct hash addresses. 1In order to
implement this method, the division K(x) by g(x) can be per-

formed by a computer or by a stage shift register.
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3.3.5 The Digit Analysis Hash Method

The digit analysis hash method <MAUR1, LUM1> differs
from all others in that it deals only with a static file
where all the keys in an input file are known beforehand.
Therefore, using either mean square deviation or standard
deviation, the skewed distribution of each digit or bit
position can be analyzed. The digits that have the most
skewed distributions (larger deviations) are deleted to make
the number of digits 1left, small enough to produce an
address in the range of the hash table. This statistical
analysis does not guarantee uniform distribution; however,

it does provide a better chance of producing uniform spread.

3.3.6 The Division Hash Method

Currently, the division hash method is the method most
frequently used. As far as distribution performance is con-
cerned, it is believed that no hash function is superior to
the division method. Most researchers in this field agree
<BUCH1, LUM1l, MAUR1l, KNUT1>. This hash algorithm simply
adds, or exclusive-ORs, the ordinal number of words in a key
and takes the remainder, and divides the sum (the combina-
tion or the encoded key, K) by bucket size number B. The
resulting remainder (h(K)) could represent any bucket number
0 through B-1.

Buchholz and Maurer suggest that the divisor should be
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the largest prime number smaller than B <BUCHl1l, MAUR2>. Lum
and his research colleagues argue that the divisor does not
have to be a prime; they propose that a nonprime number with

no prime factors less than 20 will work as well <LUM1>.

3.3.7 The Folding Hash Method

In the folding hash method <MAUR1l, LUM1>, the key is
partitioned into several parts; e.g., 3 partitions in the
key are folded inward like folding paper. Subsequently, the
bits or digits falling into the same position are exclusive-
ORed (or added). The K bits in the resulting partition are
then used to represent a hash address. This folding method
is specifically called fold-boundary or folding at the
boundaries.

In another folding method, all but the first partitions
are shifted so that the least significant bit of each parti-
tion lines up with the corresponding bit of the first parti-
tion, then these partitions are folded. This method is
often referred to as fold-shifting or shift folding. New
versions of fold-shifting are developed and discussed in the

next section.

3.3.8 The Fold-shifting Hash Method

As has been shown by several researchers <MAUR1l, KNUTI1,
KNOT1, LUM1>, the fold-shifting hash method is the fastest
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and most easily implemented method in hardware. In hardware
implementation of the fold-shifting hash method, the origi-
nal encoded keyword can be shifted, not by a shift register,
but by wires which are shifted in their connection to exclu-
sive-OR gates.

Since various fold-shifting technigques are wused in
cryptology <MELL1l, SIEG1l>, when there is an encoded one word
key (or partition) there may be many ways to fold using the
exclusive-OR operation. The questions about the fold-shift-

ing method can be described as follows:

1) How many partitions have to be made on a key?

(Or how many folding processes are needed?)

2) How many bits should be shifted or rotated for

each partition?

In answering the above questions, it is necessary to
consider how many shifted keywords are needed in folding in
order to randomize the bits in the resulting word. Since
the bit patterns of ASCII still affect each bit in the
encoded key, it is easy to see that there are similar pat-
terns in an encoded key. In other words, each byte in an
encoded key may have a similar pattern. However, the pattern
in each byte should be eliminated in the folding process.
Hence, the scope of randomization is narrowed down to a

byte. If the number of bits rotated is one, then eight
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rotated keywords might be sufficient to randomize every bit
in a byte, since eight, the number of keywords, times one,
the number of bits rotated, is the number of bits in a byte.
This fold-shifting process may be represented by
rR(0,1,2,3,4,5,6,7).

If the number of bits rotated 1is two, then the four
rotated keywords may be enough to randomize every bit in a
byte, since the number of bits to be rotated, two, times the
number of rotated keywords, four, is the number of the bits
in a byte. For example, R(0,2,4,6) 1is equivalent to any
combination of 0, 2, 4, and 6, e.g., R(2,4,6,0), R(4,6,0,2),
etc. R(0,2,4,6) also is symmetric to R(1,3,5,7), because
their resulting bits are only ordered differently. It
becomes evident that the number of rotated keywords required
is the upper boundary of the number that results from the
number of bits in a byte, eight, divided by (/) the number
of bits rotated. For hardware implementation, it would be
preferable if the number of rotated key words is 2**k (k=1,
2, or 3), due to the fact that each exclusive-OR gate has
two inputs.

When the number of bits rotated is three, R(0,3,6,1)
would be considered. If the number of bits rotated is four,
R(0,4,1,5) can be used instead of R(0,4,0,4) or R(0,4). If
five bits are rotated, R(0,5,2,7) can be used. When six
bits are rotated, R(0,6,4,2) would be considered; however,
it is symmetrical to R(0,2,4,6); therefore, R(0,6,4,2) would
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not be selected. If seven bits are rotated, R(0,7,6,5) can
be used.

These fold-shifting hash methods may require that the
number of rotated keywords should be four (2%*%*k, k=2)
because two is too little and eight is too many. Interest-
ingly, there are four bytes in an encoded keyword, and the
number of rotated keywords are four. Therefore, it can be
deduced that at least some portion of each byte should
affect the other three bytes in the keyword. Accordingly,
eight bits should be rotated right in the second keyword, 16
bits should be rotated right in the third keyword, and 24
bits should be rotated right for the fourth keyword. Thus,
R(0,2,4,6) becomes FS(0, 2+8, 4+8*2, 6+8*3) or FS(0,10,20
30). By the same process, R(0,3,6,1) becomes
Fs(0,11,22,25), R(0,4,1,5) becomes Fs(0,10,17,29),
R(0,5,2,7) becomes FS(0,13,18,31), and R(0,7,6,5) becomes
Fs(0,15,22,29).

The selected fold-shifting hash methods to be examined
are Fs(0,10,20,30), Fs(0,11,22,25), Fs(0,10,17,29),
Fs(0,13,18,31), and FS(0,10,17,29). Their distribution per-

formances are discussed in section 3.4.

3.3.9 The Midsquare Hash Method

In the midsquare hash method <MAURl, LUM2>, the key is

multiplied by itself or by some constant, then an appropri-
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ate number of bits are extracted from the middle of the
square in order to produce a hash address. If K bits are
extracted, then the range of hash values is from 0 to
2*¥*K-1, The number of buckets in the hash table must be a
power of 2, e.g., 2**K, when this type of bit extraction
scheme is used. The idea here is to use the middle bits of
the square, which might be affected by all of the charac-
ters, or the whole bytes in the key in producing a hash

address.

3.3.10 The Multiplicative Hash Method

A real number C between 0 and 1 is chosen in the multi-
plicative hash method <KNUT1l, TENEl>, The hash function is
defined as truncate(m * fraction(c * key)), where frac-
tion(x) is the fractional part of the real number x (i.e.,
fraction(x) = x - truncate(x)). 1In other words, the key is
multiplied by a real number (c) between 0 and 1. The frac-
tional part of the product is used to provide a random num-
ber between 0 and 1 dependent on every bit of the key, and
is multiplied by m to give an index between 0 and m-1. If
the word size of the computer is 32 (2**5) bits, ¢ should be
selected so that 2**(2**5)*c is an integer relatively prime
to 2**(2**5):; ¢ should not be too close to either 0 or 1.
Also if r is the number of possible character codes, one

should avoid values ¢ such that fraction((r**k)*c) is too
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close to 0 or 1 for some small value of k and values c of
the form i/(r-1) or i/(r**2-1), Values of c that yield good
theoretical properties are 0.6180339887, which equals
(sqrt(5)-1)/2, or 0.3819660113, which equals
1-(sqgrt(5)-1}/2.

3.3.11 The Radix Hash Method

In the radix hash method <MAUR1l, LUM2>, a number repre-
senting the Kkey is considered as a number in a selected
base, e.g., base 11 rather than its real base. In the radix
hash method, the resulting number is converted to base 10
for a decimal address. For example, the key 7,286 in base 10
is considered as 7,286 in base 1ll1; therefore, 7,286 in base
11 becomes 9,653 in base 10, as is shown in the equation
below:

7 * 11%*3 + 2 % 11%*%2 + 8 * 11**] + 6 = 9653 (in base 10)

Furthermore, the resulting number 9,653 can be divided
by the number of buckets in the hash table. The remainder is
then used as a hash address 3just 1like in the division
method. This combination of two methods, the radix transfor-
mation and division methods, is derived from Lin's work
<LUM1>. On the other hand, the number 9,653 may be multi-
plied by some fraction, then the fractional part of the
product will be truncated 1in order to produce a number

within the range of the hash table as a hash address. As
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this method indicates, converting a number in one base to
another base, hashes the bits. The hashed value is then used

to produce a hash address.

3.3.12 The Random Hash Method

This random hash method <MAURl> requires a statisti-
cally approved pseudo-random number generating function.
After the key is encoded, the encoded word W is sent to the
random number generating function as the seed. Then the ran-
dom hash method applies division, or some other method, to
the generated random number to produce a hash address. The
distribution performance of this hash function 1is thus
dependent on the chosen pseudo-random number generating

function.

3.3.13 The Pearson's Table Indexing Hash Method

Recently, Pearson introduced a new hash method <PEAR1>
for personal computers which lacks hardware multiplication
and division functions. The major operations used 1in this
hash method are exclusive-OR and indexed memory read and
write. As shown in Figure 3-5, an auxiliary table(T) is used
to contain 256 integers ranging from 0 to 255. Pearson's
hash function receives a string of characters in ASCII code.
Each character (C(i)) 1is represented by one byte that is
used as an index in the range 0-255,.
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1 87 49 12 176 178 102 166
121 193 6 84 249 230 44 163
14 197 213 181 161 85 218 80
64 239 24 226 236 142 38 200
110 177 104 103 141 253 255 50
77 101 81 18 45 96 31 222
25 107 180 70 86 237 240 34
72 242 20 214 244 227 149 235
97 234 57 22 60 250 82 175
208 5127 199 111 62 135 248
174 169 211 58 66 154 106 195
245 171 17 187 182 179 0 243
132 56 148 75 128 133 158 100
130 126 91 13 153 246 216 219
119 68 223 78 83 88 201 99
122 11 92 32 136 114 52 10
138 30 48 183 156 35 61 26
143 74 251 94 129 162 63 152
170 7 115 167 241 206 3 150
55 59 151 220 90 53 23 131
125 173 15 238 79 95 89 16
105 137 225 224 217 160 37 123
118 73 2 157 46 116 9 145
134 228 207 212 202 215 69 229
27 188 67 124 168 252 42 4
29 108 21 247 19 205 39 203
233 40 186 147 198 192 155 33
164 191 98 204 165 180 117 76
140 36 210 172 41 54 159 8
185 232 113 196 231 47 146 120
51 65 28 144 254 221 93 189
194 139 112 43 71 109 184 209

Figure 3-5. Pearson's Auxiliary Table T

As shown in Figure 3-6, each character of a key is
exclusive-ORed with an indexed memory read (H(i-1)) in table
H. The resulting byte is used to index the table T, and the
indexed value in T is then stored to H(i) for the next iter-
ation step. After the looping process is finished, the last
indexed value (H(n)) from the table T becomes the hash
address for the buckets ranging 0 through 255,
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procedure Pearson_Hash (var Hash_Value : integer);

var
i : integer;
begin
H(0) := 0;
for i := 1 to NUM_CHARS_IN_KEY do
begin
H(i) := T(EXCLUSIVE_OR (H(i-1), C(i)));
end;
Hash_Value := H(NUM_CHARS_IN_KEY);
end;

Figure 3-6. Pearson's Hash Algorithm

Pearson claimed that it is not necessary to know the
length of the string at the beginning of the computation.
Knowing the length of the string has been considered useful
when the end of the text string is indicated by a special
character rather than by a separately stored 1length vari-
able. He also indicated that one can generate his own ran-

dom permutations for the table (T).

3.4 An Analysis of Distribution, Speed, and Cost

Table 3-1 shows each hash function's performance in
terms of distributions on the three different data sets, in
terms of speed when implemented either in software (SW) or
in hardware (HW), and in terms of the cost of the hardware
implementation of the hash function, For measurement of
distribution, mean square deviation (MSD) 1is provided when-
ever a hash function is applied to the three different data
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<Distribution> <Speed> <Cost>

MSD clocks gates

Hash Method When Applied to
(D=Divisor) RCN GCN RNS SW HW
Maurer's Shift-| 3.95 4.06 3.81 420 70 384
fold-loading Avr. Avr, Avr.
Berkovich's 4,09 3.97 3.70 826(1) 128(1) 399
Hu-Tucker Code
Mapping 3.93 4.06 4.07 96 3 120(2)

Avr, Avr. Avr.
Fs(0,10,20,30) 4,20 3.96 4.27 44 2 192
FS(0,11,22,25) 4.03 4.46 4.88
Algebraic 4.41 4.62 3.77 452 48 390
Coding GF(2)
Pearson's 20.63 21.23 21.15 82 82 280
Table Indexing
Digit Analysis | 4.32 4.07 3.84 40(3) 2(3) 112
(2 & 4 bytes) 3.80 4,70 19.74 96
Division 5.51 5.35 4.48 70 46 390
(D=241) 16(4)| 3360(4)
Folding 4.09 3.89 53,02 56 2 117

(Fold-boundary)

Midsquare 4.25 4.84 88.91 72 30 572
8(5)| 2796(5)

Multiplicative 4.42 3.29 12.49 407 64 422
17(5)| 2892(5)

Radix 3.97 4.05 12.36 650 390 550
285(5)| 3234(5)
120(6)| 6498(6)

Random 4.25 3.63 9.79 162 80 470
57(5)| 3138(5)
26(6)| 6402(6)

o~~~ — o~ g~
NN WN -

Changeable due to variable length encoded key string.
Sixteen 64x16 bits ROMs are also required.

Analysis for digits is required beforehand.

Faster but expensive since division array is used.

Faster but expensive due to Wallace Tree for multiplication.
Both Wallace Tree and division array are used.

- N s s o

Table 3-1. Performances of Hash Functions
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sets: randomly chosen names (RCN), generally chosen names
(GCN), and randomly chosen numeric strings (RNS). The num-
ber of clock cycles (clocks) 1is wused in the measurement of
the speeds of the hash coders. The cost of building a hard-
ware hash coder is represented according to the number of
gates needed. Finally, the performance of each hash func-

tion is discussed based on the experimental results.

3.4.1 Performance of Maurer's Shift-fold-loading method

The distribution performance of Maurer's shift-fold-
loading hash method is measured in 10 different groups of
eight bits among 128 resulting bits., The first group of
eight bits for a hash address is made up of the 10th through
the 17th resulting bits from the hash method. The second
group is composed of the 20th through the 27th resulting
bits from the hash method. The other groups are composed
from bits 30 through 37 (30-37), 40-47, 50-57, 60-67, 70-77,
80-87, 90-97, and 100-107 resulting bits for the hash
address. The mean square deviations of these groups are
computed by requiring that the hash method be applied to the
three data sets, such as RCN, GCN, and RNS, as shown in
Table 3-2. The measured mean square deviations mostly are
between 3 and 5 regardless of the selected resulting bits.
This result assures that any of the resulting bits generated

by this hash method can be included in producing hash
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addresses with a good distribution.

The MSDs of the Shift-fold-loading Hash Method

Selected Bits for a Hash Address

Data Set| 10-17 20-27 30-37 40-47 50-57 60-70

RCN 4,29 3.27 3.79 4.13 3.66 3.74
GCN 4.13 3.84 4.66 4.11 3.71 4.41
RNS 3.88 4.04 4.45 4.07 3.81 3.95

Selected Bits for a Hash Address Average of
Data Set 70-77 80-87 90-97 100-107 the 10 MSDs

RCN 3.83 4.13 4,20 3.77 3.95
GCN 4,54 3.91 3.83 3.60 4.12
RNS 4.05 4,40 3.74 4,22 3.97

Table 3-2, Distribution Performance of Maurer's
Shift-fold-loading Hash Method

The speed of this hash method 1is 420 clock cycles when
implemented in software, and 70 clock cycles when imple-
mented in hardware. Because the key registers that hold the
l6-byte key cannot be assumed to be connected in a conven-
tional processor, the software implemented shift-fold-load-
ing hash coder takes considerable time in order to rotate
some bits in a word register, and to copy some of the bits
to the next word register. This hash method is also a hard-
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ware oriented hash method which 1is similar to the mapping
hash method.

When this method is implemented in hardware, a simple
shift register, with adequate length to hold a four-word
key, is provided for a fast shift operation. The hash method
in hardware uses fast operations, such as shift and exclu-
sive-OR. The decrease in speed 1is caused primarily by the
log n times--n is the number of bits in a key (e.g., log 128
= 7)--of loading operations. Adding the repetitive loading
operations in the hash algorithm may help to better the dis-
tribution of keys, but it also reduces the hash coder's per-
formance in terms of speed.

The cost of this hardware hash coder is counted as 384
gates, which includes flip-flops in the shift register and

exclusive-OR gates.

3.4.2 Performance of Berkovich's Hu-Tucker Code Hash Method

As shown in Table 3-1, the mean square deviations,
4.09, 3.97, and 3.77, show that the distribution performance
of Berkovich's Hu-Tucker code hash method is one of the best
methods. Seemingly, this hash method is not data dependent
since there is no distinguishable difference in the three
mean square deviations. This data independency may result
from the variable 1length of the Hu-Tucker code for each

character. While partitions in a Hu-Tucker coded key are
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folded, another randomization is added into the Hu-Tucker
code conversion which already randomizes the value of the
key, to some degree.

The speed of this hash code is dependent on the length
of the coded bit string. For example, the Hu-Tucker coded
value of the Kkey 'XXX' is '111111001111110011111100';
whereas, that of the key 'EEE' is '010010010.' Hence, the
key 'XXX' requires more folding steps, resulting in more
time 1in the hash address calculation than the key 'EEE'
does. Therefore, the speeds, 826 and 128 clocks, which are
shown in Table 3-1, can be increased or decreased depending
on every input key. Those clock cycle figures are obtained
by using some medium size Hu-Tucker coded bit string. The
major drawback in the speed performance of this hash method
results from adding the number of bits in a Hu-Tucker code
repeatedly to get the cumulative number of bits in the
encoded bit string.

The hardware hash coder requires 399 gates owing to the
assumption that eight bits are the maximum number of bits in
Hu-Tucker code words. The register which contains the
encoded bit string may have 128 flip-flops (8 bits in each
of 16 characters). Moreover, an eight-bit counter register
and several levels of exclusive-OR gates are helpful in

increasing the speed of the address calculation.
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3.4.3 Performance of the Mapping Hash Method

Distribution performances of the mapping hash method
have been developed in cases when each ROM contains prime
numbers and when each ROM contains random numbers. Tables
3-3A and 3-3B show the distribution performances in terms of
mean square deviation (MSD) when the mapping hash method is

applied to the three different data sets.

The MSDs of the Mapping Hash Method Using Prime Numbers

Selected Bits for a Hash Address
Data Set 2-9 3-10 4-11 5-12 6-13 Average

RCN 3.74 3.83 4,13 4.20 3.77 3.93
GCN 4.41 4,54 3.91 3.83 3.60 4.06
RNS 3.95 4,05 4,40 3.74 4,22 4.07

Table 3-3A. Distribution Performance of the Mapping
Hash Method with Prime Numbers

The MSDs of the Mapping Hash Method Using Random Numbers
Selected Bits for a Hash Address
Data Set 1-8 2-9 3-10 4-11 5-12 Average
RCN 3.95 3.72 4.69 4,06 4,20 4.12
GCN 3.48 3.63 3.87 3.89 3.70 3.71
RNS 3.77 3.91 4,03 4.48 4,16 4.07

Table 3-3B. Distribution Performance of the Mapping
Hash Method with Random Numbers
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As shown in the Tables 3-3A and 3-3B, mean square devi-
ations hover around four, as do those of other relatively
good hash methods. Since there 1is no distinguishable dif-
ference between using prime numbers and random numbers for
each ROM, there is no clear reason to insist on solely prime
numbers.

The results do not provide any clue regarding data
dependency, since the mapping hash function distributes
numeric string keys as well as other keys. Different groups
of eight bits, e.g., 1-8, 2-9, 3-10, 4-11, 5-12, 6-13 bits,
are extracted to compose a hash address (The 1-8 means bits
1l through 8 are selected.); there is no noticeable differ-
ence between the distribution performances of the various
groups.

The major objective in developing a new hash method is
to obtain a fast hash address calculation wusing any neces-
sary hardware. By virtue of byte-by-byte parallel process-
ing, with separate ROM and four levels of exclusive-OR gates
for each character, the mapping hash method can produce a
hash address within three clock cycles. Two clock cycles of
the MC68030 processor are required for the memory read to
retrieve a random number from the corresponding ROM, as is
specified in the Motorola's users manual <MOTOl>. One clock
cycle is taken for the calculation process for hash address
bits through the four levels of exclusive-OR gates. As men-
tioned previously, the maximum gate delay is nine nanose-
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conds and the clock frequency is set to 20 MHz (50 nanose-
conds per a clock pulse width); thus, the address bit signal
can pass through the four gate levels (4*9 = 36 <= 50 nsec)
within a clock cycle. When this hash coder is implemented
in software, the speed is 96 clock cycles, which is more
than 32 times slower than the hardware hash coder's 3 clock
cycles.

The number of gates needed to implement the hardware
mapping hash coder is 120, since eight exclusive-OR modules
(8 * 15 = 120) are required to produce eight bits for a hash
address. In addition to the gates, sixteen 64*16 bits (64
prime numbers) of ROMs are required to convert 16 characters
in a key to 16 corresponding prime numbers in respective
ROMs.

The performance of the author's additive mapping hash
method, which is described in section 3.3.3, also is thor-
oughly examined in this dissertation. The mean square devi-
ations of the additive hash method are 4.40, 3.91, and 3.58
when it is applied to the RCN, GCN, and RNS respectively.
The additive mapping hash method shows competitive distribu-
tion performances when it is tested. This result supports
the claim that addition and exclusive-ORing produce the same
effect in randomizing the bit values. The hardware imple-
mentation of the additive mapping hash method does not sub-
stantially speed up the hash address calculation time, since
64 clock cycles are still required. The speed of the soft-
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ware implemented additive mapping hash method is the same as
that of software implemented exclusive-OR mapping hash meth-
0d--96 clock cycles. The speed for both methods is based on
the table of MC68030 instructions' execution time.

The architecture of the additive mapping hash coder
would be the same as that of the carry lookahead adder
<CAVAl> that 1is faster than the ripple carry adder. The
number of gates needed to develop 16 bits of a carry looka-
head adder is 182. The sixteen 64*16 bits ROMs, used in the
hardware mapping hash coder, are no longer necessary, Since
in serial processing sixteen sets of 64 prime numbers, as a
two dimensional array, can be stored in the main memory

instead of in the 16 ROMs.

3.4.4 Performance of the Algebraic Coding Hash Method

The Galois Field GF(2) has been chosen in order to ana-
lyze the performance of the algebraic coding hash method.
The distribution performance of this method (MSDs of 4.41,
4,62, and 3.77), as shown in Table 3-1, has been judged
acceptable, because it does not show any data dependency.
Although this is a hardware oriented hash method, the speed
performance of 48 clock cycles in a hardware implementation
is not as fast as the speed performance of the 3 clock
cycles of the mapping hash method. If this method is imple-

mented in software, it is relatively slow--452 clock cycles.
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The number of gates needed to implement this method in

hardware totals approximately 390.

3.4.5 Performance of the Digit Analysis Hash Method

The distribution performance of the digit analysis hash
method <MAUR1l, LUM1> is measured by using two types of
encoded keys: 2 bytes and 4 bytes. Before the keys are
hashed, they are scanned to provide information about the
distribution of values of a key in each digit. The resulting
statistics are shown in Tables 3-4A and 3-4B. The most
skewed distributions--digits with a large deviation--are
deleted until the number of remaining digits equals the hash
address length of 8 bits.

As these statistics indicate, if the hash address bits
consist of the selected bits from the digit analysis, then
the subsequent distribution performance must be as good or
better than other digit selections.

After investigation, it was found that the selected
group of bits for the hash address in this hash method is
not always the best group of bits. As shown in Table 3-1, in
the case of the four byte encoded key, the MSD of RNS is
19.74 which 1is a relatively poor distribution performance.
However, the MSDs in the case of the two byte encoded key
are 4.32, 4.07, and 3.84. These findings indicate that this

hash method may be data dependent.
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Statistics for the Digit Analysis Method (I)
Number of 1's and (Deviation)

Bit No. RCN GCN RNS

Bit 1 489 (529) 483 (841) 502 (100)#
Bit 2 533 (441)* 502 (100)@ 521 (81)#
Bit 3 502 (100)* 487 (625) 478 (1156) 4
Bit 4 484 (784) 515 (9)e 517 (25)¢#
Bit 5 548 (1296) 513 (1)e 0 (262144)
Bit 6 585 (5329) 505 (49)e 0 (262144)
Bit 7 519 (49)* 500 (144)@ 0 (262144)
Bit 8 0 (262144) 0 (262144) 0 (262144)
Bit 9 501 (121)* 506 (36)@ 516 (16) ¢
Bit 10 534 (484)* 523 (121)e 529 (289)#
Bit 11 498 (196)* 526 (196) 518 (36) 4%
Bit 12 524 (144)* 542 (900) 492 (400)#
Bit 13 500 (144)* 504 (64)e 0 (262144)
Bit 14 420 (8464) 494 (324) 0 (262144)
Bit 15 486 (676) 472 (1600) 0 (262144)
Bit 16 0 (262144) 0 (262144) 0 (262144)

Selected Bits in a Key (2 bytes) for Hash Address

RCN
GCN
RNS

Table

input

2, 3,
2, 4,
1, 2,

7, 9,
5, 6, 7,
3' 4' 9'

10, 11,

10,

11,

12,

13th bits (*)
13th bits (@)

12th bits (%)

3-4A. Statistics for the Digit Analysis Method (I)

In the digit analysis hashing process,

data

file have to be

scanned twice,

once

the keys in the

for digit

analysis and once for hashing. The speed of this hash method

is 40 clock cycles for software implementation,

cycle

only

s for

works

hardware implementation.

for a static input

file.

However,

When a

and 2 clock
this method

static input

file is read and digits are selected by the analysis, the
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Statistics for the Digit Analysis Method (II)

Number of 1's and (Deviation)
RCN GCN RNS
Bit 1 536 (576) 492 (400) 0 (262144)
Bit 2 508 (16)* 520 (64) 521 (0)#
Bit 3 498 (196) 518 (36) 509 (9)#
Bit 4 500 (144) 517 (25)e 474 (1444)
Bit 5 473 (1521) 475 (1369) 0 (262144)
Bit 6 689 (31329) 744 (53824) 0 (262144)
Bit 7 435 (5929) 429 (6889) 0 (262144)
Bit 8 0 (262144) 0 (262144) 0 (262144)
Bit 9 514 (4)* 522 (100) 516 (0)4
Bit 10 467 (2025) 517 (25)@ 522 (100)#
Bit 11 516 (16)* 510 (4)@ 514 (4)%
Bit 12 481 (961) 498 (196) 436 (5766)
Bit 13 430 (6724) 462 (2500) 0 (262144)
Bit 14 329 (33489) 275 (56169) 0 (262144)
Bit 15 483 (841) 443 (4761) 0 (262144)
Bit 16 0 (262144) 0 (262144) 0 (262144)
Bit 17 519 (49)* 509 (9)e 502 (100)#
Bit 18 505 (49)* 512 (0)e 509 (9)4
Bit 19 512 (0)* 535 (529) 495 (289)
Bit 20 520 (64)* 516 (l6)@ 443 (4761)
Bit 21 483 (841) 424 (7744) 0 (262144)
Bit 22 366 (21316) 399 (12769) 0 (262144)
Bit 23 502 (100) 515 (9)e 0 (262144)
Bit 24 0 (262144) 0 (262144) 0 (262144)
Bit 25 501 (121) 502 (100) 500 (144)
Bit 26 509 (9)* 518 (36)@ 505 (49)#
Bit 27 522 (100) 522 (100) 526 (196)
Bit 28 493 (361) 496 (256) 420 (8464)
Bit 29 418 (8836) 462 (2500) 0 (262144)
Bit 30 353 (25281) 335 (31329) 0 (262144)
Bit 31 501 (121) 545 (1089) 0 (262144)
Bit 32 0 (262144) 0 (262144) 0 (262144)

Selected Bits in a Key (4 bytes) for Hash Address

RCN
GCN
RNS

2, 9,

2, 3,

4, 10,

11,
11,

17,
17,

9, 10, 11, 17, 18,

18,
18,

19,
20,

20,
23,

26th bits
26th bits (@)

(*)

26th bits (%)

Table 3-4B. Statistics for the Digit Analysis Method (II)
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keys are hashed very fast. The cost of building this hash
coder in hardware is the least expensive, either 112 or 96
gates for encoding, since it does not include any hardware

function for mathematical operation.

3.4.6 Performance of the Division Hash Method

The distribution performance of the division hash
method <BUCHl, MAUR1l, LUMl1> varies, depending on the chosen
divisor which is close to the number of buckets, as is shown
in Table 3-5.

If an inappropriate divisor is chosen, a data depen-
dency problem may occur. In this experiment, the divisors
which are greater than the number of buckets 1in a table
(i.e., 256) are also tested. The divisor 257 is a nonprime
number with prime factors less than 20, as recommended by
Lum and his colleagues, but it shows very poor distributions
(MSDs of 5.67, 11.95, and 122.99). As Maurer and Buchholz
suggested <MAUR2, BUCH1>, using the largest prime number,
(i.e., 241) that also is smaller than the number of buckets,
as the divisor, yields better results (MSDs of 5.51, 5.35,
4.48).

The speed of the division method is relatively fast for
both the software implementation (70 clock cycles) and the
hardware implementation (46 or 16 clock cycles). The two

major means of implementing the division hash method in
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The MSDs of the Division Method
Divisor RCN GCN RNS
Used
241 (1) 5.51 5.35 4,48
242 4,94 5.34 21.91
243 4,43 4,52 4,98
244 4,78 4.80 21.00
245 4,19 5.39 4,95
246 4.48 3.94 21.02
247 4,28 4.67 4,49
248 4,15 4.56 20,51
249 4,29 5.66 4,21
250 4.90 4.66 20,73
251 3.80 4,30 4,34
252 4,55 4.24 20.48
253 4.09 4,84 4,92
254 3.95 4.12 93,72
255 5.77 8.23 107.82
256 (2) 25.63 20.20 502.54
257 5.67 11.95 122.99
258 4,59 4.45 93.13
259 4,85 6.60 4,10
260 5.07 5.11 20.28
261 3.13 4,99 3.95
262 4,58 3.51 21,38
263 (1) 4,71 4,31 4,68
(1) Prime Number Divisor =--- 263 and 241
(2) Number of Buckets ------ 256

Table 3-5. Distribution Performance of
the Division Hash Method

hardware are sequential shift-subtract/add nonrestoring (or
restoring) division and the division array <CAPPl>, The
speed of the division operation can be reduced from 46 clock
cycles to 16 clock cycles by adapting the division array,
but the cost of the hardware is increased from 390 gates
(sequential shift-subtract/add nonrestoring division) to
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3360 gates.

The ordinal numbers of each character in a key are
added and the sum is divided by the number of buckets in
order to calculate the remainder; this process is referred
to as the additive division method. This method also has
been analyzed (MSDs are 3.97, 3.91, and 86.76). When the
additive division 1is applied to the data set RNS, a poor
distribution (MSD 86.76) results because the cumulative num-
bers (or SUMs) from the numeric character strings are not
large enough when compared to the number of buckets. There-
fore, the additive division method can only be used when the
average ratio of sums and the number of buckets (sums/number
of buckets) is sufficiently large.

Several other researchers <BUCHl1l, LUM], RAMAl1> con-
ducted experiments on typical key sets in order to discover
the ideal hash method. Their overall conclusions verify that
the simple method of division seems to be the best key to
address transformation technique when computational time is
not critical. Nevertheless, in this survey of hash methods,
the division method is not highly recommended, since either
the mapping or the additive mapping method can be used
instead, depending on the application environment. In the
application, where fast hash address calculation is not
required, the author's additive mapping method is superior
to the division method. When using the additive mapping
method, one need not worry about selecting a correct divi-
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sor; one need only divide the sum or combination by the num-
ber of buckets in order to arrive at a remainder for a hash
address. On the other hand, when the speed in address calcu-
lation is imperative and the number of buckets can be 2%**n,
then a hardware hash coder is needed, and the mapping hash
coder which 1is faster and cheaper than the division hash

coder is thus recommended.

3.4.7 Performance of the Folding Hash Method

There are several different types of folding hash meth-
ods. In this experimental environment, the fold-boundary
method, as described by Maurer <MAUR1>, is simulated in
order to show the distribution performance. The MSDs are
4.09, 3.89, and 53.02 when the bits (11 through 18, which
are exclusive-ORed twice) are extracted to compose a hash
address.

As shown in Table 3-6, the distribution performance on
the randomly chosen numeric strings (RNS) data set is poor.
The bits, in particular, the 11lth through the 18th, the 12th
through the 19th, and the 13th through the 20th, are used to
represent a hash address; however, data dependency is still
reflected in the distribution. A deliberately designed fold-
ing method--rotating bits in a different way and then fold-
ing them together--might prevent the data dependency problem

in the key distribution. 1In this dissertation, an effort is
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made to introduce a reasonable fold-shifting hash technique
for better key distribution, such as FS(0,10,20,30), as was

mentioned in section 3.4.8.

The MSDs of the Folding Method
Bits Selected RCN GCN RNS
18 ... 11 4.09 3.89 53.02
19 ... 12 3.72 3.89 53.86
20 ... 13 3.63 3.62 56.23

Table 3-6. Distribution Performance of
the Fold-boundary Hash Method

3.4.8 Performance of the Fold-shifting Hash Method

The distribution performances of the author's fold-
shifting hash method, in particular, Fs(0,10,20,30) and
FS(0,11,22,25), are as good as those of other acceptable
hash methods. But other selected fold-shifting methods, such
as Fs(0,12,17,29), Fs(0,13,18,31), and FS(0,15,22,29), show
a data dependency problem, such that the distribution per-
formance on the RNS data set is not compatible with the dis-
tribution performance on the RCN and GCN data sets, as is
demonstrated in Table 3-7. Therefore, careful selection of
the number of partitions and the number of rotated bits is

required.
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<Selected Bits>

1-8 9-16 17-24 25-32

R(0,2,4,6) => RCN 4,48 3.88 4,20 3.84

Fs(0,10,20,30) GCN 4,77 3.63 3.96 4,27

RNS 3.44 4,58 4.41 3.56

R(0,2,4,6) => FS(0,2+8%*1,4+8*%2,6+8%*3) = Fs(0,10,20,30)
<Selected Bits>

1-8 S-16 17-24 25-32

R(0,3,6,1) => RCN 3.73 4,23 4,03 3.34

Fs(0,11,22,25) GCN 4,34 3.71 4.46 4,14

RNS 3.51 4.19 4,88 3.94

R(0,3,6,1) => FS(0,3+8*1,6+8%2,1+8%*3) = Fs(0,11,22,25)
<Selected Bits>

1-8 9-16 17-24 25-32

R(0,4,1,5) => RCN 4,23 4,12 4,41 4.02

Fs(0,12,17,29) GCN 4.43 4.15 4,98 3.74

RNS 4,02 4,98 20.70 3.69

R(0,4,1,5) => FS(0,4+8%1,1+8%2,5+8*3) = Fs(0,12,17,29)
<Selected Bits>

1-8 9-16 17-24 25-32

R(0,5,2,7) => RCN 3.80 3.84 4.46 3.83

Fs(0,13,18,31) GCN 3.55 4,33 5.09 3.63

RNS 20,05 21.16 20.13 4.16

R(0,5,2,7) => FS(0,5+8%1,2+8%2,7+8*3) = Fs(0,13,18,31)
<Selected Bits>

1-8 9-16 17-24 25-32

R(0,7,6,5) => RCN 4.07 4,11 4,05 4,42

Fs(0,15,22,29) GCN 4.17 4.13 5.28 4,05

RNS 53.02 20.64 21.60 21,00

rR(0,7,6,5) => FS(0,7+8%1,6+8%*2,5+8*3) = FS(0,15,22,29)

Table 3-7. Distribution Performances of Various
Fold-shifting Hash Methods
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Therefore, the FS(0,10,20,30) 1is recommended for a
hardware implemented hash coder, since the hash operation
takes only two clock cycles and the number of gates required

in a hash coder is 192, which is relatively inexpensive.

3.4.9 Performance of the Midsquare Hash Method

As shown in Table 3-1 and Table 3-8, the mean square
deviations (4.25, 4.84, and 88.91) of the midsquare method
<MAUR1l, LUM2> reveals that this method has a data dependency
problem; that is, in cases where the keys are similar in
some form, this method has a high potential for producing

more key clusterings.

The MSDs of the Midsquare Method
Bits Selected RCN GCN RNS
20 ... 13 4,25 4,84 88.91
19 ... 12 4.76 5.13 72.52
18 ... 11 4,45 4,48 68.55

Table 3-8. Distribution Performance of the Midsquare
Hash Method

When this hash method is implemented in software, the
hashing operation requires 72 clock cycles. The speed of a

hardware midsquare hash coder which uses a sequential add/
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shift multiplier <CAVAl> 1is 30 clock cycles. The speed of
the coder can be improved to eight clock cycles if a Wal-
lace's fast multiplier is used <WALLl>, However, the cost
of the hardware hash coder increases from 572 to 2796 gates

for the speed gain.

3.4.10 Performance of the Multiplicative Hash Method

According to the MSDs (4.42, 3,29, 12.49) of the multi-
plicative hash method <KNUT1l, TENE1l> in Table 3-1, the dis-
tribution performance of the multiplicative hash method is
open to doubt. This method may have a data dependency prob-
lem--since, as is indicated in the table, the MSD of 12.49
on the numeric strings (RNS) data set 1is one of poorest
results for a hash method.

The software implemented multiplicative hash coder is
relatively slow (407 clock cycles); however, if Wallace's
fast hardware multiplier 1is built into the hash coder, it
can improve the speed to 17 clock cycles with the cost of
2,892 gates. Thus, the sequential add/shift multiplier may
be an alternative way of implementing the multiplicative
hash coder. In this case, an address calculation requires 64

clock cycles, and the cost of the hash coder is 422 gates.

3.4.11 Performance of the Radix Hash Method

The distribution performance of the radix hash method
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<MAURl, LUM2> is similar to that of the multiplicative hash
method. The distribution performances (MSDs 3.97 and 4.05)
of the names data set (RCN and GCN) are observably better
than the distribution performance (MSD 12.36) of the numeric
strings data set (RNS). However, this hash method also has
demonstrated a potential to perform poorly when keys in a
data set are similar.

The radix hash method is one of the most time consuming
methods since it takes extra time to convert each digit of a
key into another base number. The software implemented radix
hash coder needs about 650 clock cycles to transform a key
to an address. Because of the complexity in this hash algor-
ithm, hardware implementation does not improve the speed
(390, 285, and 120 clock cycles), and it increases the cost
(550, 3234, and 6498 gates, respectively), as has been dis-

closed in Table 3-1.

3.4.12 Performance of the Random Hash Method

The distribution performance of the random hash method
<MAUR1> is dependent on the chosen random number generating
function. In this experiment, the pseudo random number gen-
erating function suggested by Carta <CART1> is used in gen-
erating a hash address. The distribution performance (MSDs
4,25, 3,63, and 9,79) of this hash method is among the low-

est of those tested.
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The speed performance, implemented 1in software, is
measured at 162 clock cycles, which includes the computation
time of a multiplication, a division, and an addition. The
hardware hash coder for the random method may be implemented
in many different ways. An economic hardware hash coder,
which is not equipped with a division array or Wallace's
multiplier, takes about 80 clock cycles in a hash address
calculation and requires 470 gates to provide a sequential
multiplier and divider, carry 1lookahead adder, and exclu-
sive-OR gates for encoding.

If the hash coder uses a Wallace fast multiplier, it
can speed up the address computation to 57 <clock cycles;
however, the cost rises to 3,138 gates. If the division
array is added for fast division, the number of clock cycles
in the address calculation drops to 26; however, the expense

is subsequently increased to 6,402 gates.

3.4.13 Performance of the Pearson's

Table Indexing Hash Method

Pearson's table indexing hash method appears to be
erratic owing to its poor distribution performance (MSDs:
20.63, 21.23, and 21.15). Hardware implementation of this
hash function would not improve the speed of address calcu-
lation. The measured speed of address calculation is 82

clock cycles in both hardware and software implementations.
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CHAPTER 4

ARCHITECTURE OF THE NEW JOIN DATABASE COPROCESSOR

Based on the hashing simulation results and the esti-
mates of speed and cost in Chapter 3, the first section of
this chapter explains the grounds for choosing the mapping
hash method for the hash coder of the HIMOD database com-
puter. In the next section, the connection between the host
processor and the join database coprocessor 1is described;
each of their functionalities in performing the join opera-
tion also is illustrated. The architecture of the host pro-
cessor and the software back-end are described in section
4.3, The architecture of the hardware back-end is described

in block diagrams in the final section.

4.1 The Mapping Hash Method as the Choice

After surveying the various hash methods in Chapter 3,
the mapping hash method is selected for the hash coder in
the database coprocessor because it not only has reliable,
data independent, and relatively good key distribution, but
it also takes only three clock cycles to transform a key to
an address if the mapping hash coder is implemented in hard-
ware. The performances of the mapping hash method, in terms
of both the key distribution and the speed of the mapping
hash coder, are highly persuasive.
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In this application environment, the hash coder is the
major component in the database coprocessor which is used as
a filter device. When long queries are being executed on a
large database, a series of millions and millions of data
are waiting to be hashed out through that filter. The speed
in a hash address calculation should be a crucial factor in
selecting a hash method.

The mapping hash technique 1is designed not only for
good distribution but also for fast address calculation.
The parallel processing transforms each character into a
number and calculates each bit value in a hash address by
means of hardware, in order to produce a hash address within
three clock cycles. Other hash methods cannot take advantage
of such effective parallel processing because of the algor-
ithmic nature of their hash address calculation. For exam-
ple, some of the well-known hash functions, such as the
midsquare and the fold-boundary, show data dependency prob-
lems. Other hash functions, like the multiplicative, the
radix, and the random, show signs that they may perform
poorly for specific data sets.

The mapping hash coder in hardware is relatively inex-
pensive compared to other hardware hash coders. It requires
120 gates and sixteen 64*16 bits ROMs, since the mapping
hash function does not use the complex mathematical opera-
tions, 1like multiplication and division, that other hash
methods, such as midsquare, multiplicative, radix, random,
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and algebraic coding, do.

Another requirement of a hash function for this appli-
cation specifies that the database coprocessor must have
five statistically independent hash coders; five hash
addresses are produced within the same period of time and
must be totally independent of each other. The reason for
this requirement will be explained in the next section in
which the filtering technique which employs five function-
ally different hash coders will be described. For this par-
ticular requirement, the mapping hash method is advanta-
geous, since based on the stored contents (selected prime
numbers) of the ROMs, each hash coder calculates a hash
address in 1its unique way. Because each of the five hash
coders has a different set of numbers, the five hash
addresses generated at a time are independent of each other.
The address calculation time for each hash coder is always
the same. This characteristic of statistical independence
becomes an asset of the mapping hash function. Not every
hash function has such a property. To provide each hash
coder with statistical independence, the modification of
each hash function is often brute-force; therefore, claiming
that each hash function is 100 percent functionally differ-
ent is difficult. In addition, it also is hard to maintain
the same address calculation time for each modified hash
coder.

An alternative hash method might be folding of the four
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rotated keyword, e.g., FS(0,10,20,30). It is extremely fast
and inexpensive when this method is implemented in hardware.
The distribution performance of this method seems good, but
it is not very reliable in terms of data dependency. None-
theless, there has been an effort to discover five statisti-
cally independent hash functions using this method. However,
data independence remains an uncertainty, since some of them
have shown a data dependency problem.

Consequently, it is concluded that the mapping hash
coder in hardware satisfies the three requirements of dis-
tribution, speed, and cost; moreover, it provides the prop-
erty of statistical independence in each hash function. As a
result, this method has been adapted for the database hash

coder in the database computer HIMOD.,

4.2 An Overview of HIMOD Architecture

As mentioned previously, the primary goal of this dis-
sertation research is to implement a database computer that
supports frequently used and time-consuming software data-
base management functions such as the join operation using a
database coprocessor. The main approach of this dissertation
research is to maximize the filtering effect in the join
process, in order that the database coprocessor may be used
as a filter device. 1In this way, the unnecessary data are

filtered by the filter as soon as they are detected and only
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the tuples included in the resulting relation will be
transmitted to the host processor. The transmitted source
tuple(s) and target tuple(s) are then merged by the host
processor. Therefore, parallelism is exploited in the join
operation so that the filtering process and the merging pro-
cess are concurrently executed by the back-end and the host

respectively, as is indicated in Figure 4-1.

output ‘

Data
tuples for the
resulting relation <&—>| Base
Host Back-End
Merging 5| Filtering _
Process Process <> Main or
requests Local
Memory

Figure 4-1. Execution of the Relational Join in HIMOD

The main idea behind the new relational join in HIMOD
contends that the tuples, which the host processor receives,
are the only ones necessary in producing a resulting rela-
tion. There are only a small number of tuples in most cases;
therefore, the host processor is not burdened with carrying
many join attributes and comparing them for a match. The
filtering scheme in HIMOD is accomplished by the stack ori-

ented filter technigue (SOFT) and the new hash-based join
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algorithm which will be more explicitly explained in the
next chapter.

HIMOD uses a Motorola 68030 32-bit microprocessor as
the host processor. The back-end processor communicates with
the host processor through a protocol, which is defined as
the M68000 coprocessor interface <MOTOl>. A back-end proces-
sor adds additional database instructions, plus additional
registers and data types to the programming model not
directly supported by the host processor architecture. The
necessary interactions between the host processor and the
database coprocessor become transparent to the programmer.
The programmer, therefore, does not need to know the spe-
cific communication protocol between the host processor and
the database coprocessor because this protocol is imple-
mented in hardware. Thus, the database coprocessor can pro-
vide capabilities to the user without appearing to be sepa-
rate from the host processor.

The connection between the host processor unit (HPU)
and the database coprocessor (DBCP) develops from a simple
extension of the M68000 bus interface. The DBCP is connected
as a coprocessor to the host processor, and a chip select
signal, decoded from the host processor function codes and
address bus, selects the DBCP. The host processor and the
coprocessor configuration is shown in Figure 4-2.

All communications between the HPU and the DBCP are
performed with standard M68000 family bus transfers <MOTOl>.
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The DBCP is designed to operate on a 32-bit data bus. The
DBCP contains a number of coprocessor interface registers,
which are addressed by the host processor in the same manner

as memory.

chip

select
signals
MC68030 Database Main

3

Coprocessor Memory

T T .

Address Bus

Processor Data BuS ;>Bus

Secondary

Storage

Figure 4-2. Coprocessor Configuration

4.3 Architecture of the Host Processor

Since the MC68030 is selected for the host processor of
HIMOD, the general description and features of the MC68030
<MOTOl1> are briefly illustrated here. The MC68030 is a sec-

ond-generation full 32-bit enhanced microprocessor from
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Motorola. The MC68030 combines a central processing unit, a
data cache, an instruction cache, an enhanced bus control-
ler, and a memory management unit in a single VLSI device.
This processor operates at clock speeds beyond 20 MHz. It is
implemented with 32-bit registers and data paths, 32-bit
addresses, a rich instruction set, and versatile addressing
modes.

The MC68030 enhanced microprocessor provides the non-
multiplexed bus structure with 32 bits of address and 32
bits of data. The MC68030 bus has a controller that sup-
ports both asynchronous and synchronous bus cycles, as well
as, bus data transfers. It also supports a dynamic bus siz-
ing mechanism that automatically determines device port
sizes on a cycle-by-cycle basis as the processor transfers
operands to or from external devices. A block diagram of
the MC68030 is shown in Figure 4-3,

In the MC68030 enhanced microprocessor, the instruc-
tions and data required by the processor are supplied from
the internal caches whenever possible. The memory management
unit (MMU) translates the logical address generated by the
processor into a physical address using its address transla-
tion cache (ATC). The bus controller manages the transfer of
data between the CPU and memory or devices at the physical

address.,
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As described in the MC68030 user's manual <MOTOl>, the

major features of the MC68030 microprocessor are:

1. Object code compatible with the MC68020 and earlier
M68000 microprocessors,

2. Complete 32-bit non-multiplexed address and data
buses,

3. Sixteen 32-bit general purpose data and address
registers,

4. Two 32-bit supervisor stack pointers and ten special
purpose control registers,

5. 256-byte instruction cache and 256-byte data cache
that can be accessed simultaneously,

6. Paged memory management unit that translates
addresses in parallel with instruction execution and
internal cache accesses,

7. Two transparent segments which allow untranslated
access to physical memory to be defined for systems
that transfer large blocks of data between predefined
physical addresses, e.g., graphics applications,

8. Pipelined architecture with increased parallelism
that allows accesses to internal caches to occur in
parallel with bus transfers and instruction execution
to be overlapped,

9. Enhanced bus controller that supports asynchronous
bus cycles (three clocks minimum), synchronous bus
cycles (two clocks minimum), and bus data transfers
(one clock minimum) all to the physical address space,

10. Dynamic bus sizing supports 8-, 16-, 32-bit memories
and peripherals,

11. Support for coprocessors with the M68000 coprocessor
interface; e.g., full IEEE floating-point support
provided by the MC68881/MC68882 floating-point
coprocessors,

12. 4-gigabyte logical and physical addressing range,

13. Implementation of Motorola's HCMOS technology that
allows CMOS and HMOS (High Density NMOS) gates to be
combined for maximum speed, low power, and optimum
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die size,

14. Processor speeds beyond 20 MHz,

The prime reason behind choosing the MC68030 is that it has
a 4-gigabyte logical and physical addressing range, which is
sufficient for most of the database management systems.
Another motive is that the simple M68000 coprocessor inter-
face incorporates the design of the database coprocessor.
HIMOD may use MC68030 as a software back-end. This
software back-end dedicates only database management func-
tions; therefore, the contents of microsequencer and control
store should be entirely replaced with the microcodes of
database operations. Furthermore, there is no hardware modi-
fication or enhancement on the database coprocessor except
for the interface unit; innovative software architecture is

implemented on the back-end instead.

4,4 Architecture of the Hardware Back-End

The new hardware back-end processor is intended prima-
rily for use as a database coprocessor(DBCP) to the MC68030
32-bit microprocessor unit(HPU). This database coprocessor
provides a high performance filter unit. The major features

of the DBCP are:

1. Fully concurrent instruction execution with the main
processor,
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Five fast hash coders that produce five statistically

independent hash addresses simultaneously within

three clock cycles,

Two single-bit wide (256 bits) RAMs
each hash coder to keep the records

hash addresses,

Five hash address comparators which
the corresponding hash coders, tell
kind of key (or join attribute) has

the filter or not,

Condition code to check if only one

connected to

of generated

are attached to
whether only one

passed through

kind of hash

address has been produced.

As shown 1in Figure 4-4, the database coprocessor is

internally divided into three processing elements: the bus

interface unit, the coprocessor control unit, and the filter

unit. The bus interface unit communicates with the host pro-

cessor, and the coprocessor control unit sends control sig-

nals to the bit array filter unit
intended database operation. For
unit and the processor control unit,
ventions of the MC68881 and MC68882

sor chips <MOTO02>,

-109-

in order to execute the
both the bus interface
the DBCP uses the con-

floating-point coproces-



A C Coprocessor
Dl P 3 Bus | >
D N - Control Unit
D R T
Al [El R R Inter- {}
T IS__I0 D> face
A S L g N
Filter
B B B R Unit K p |
U U P Unit
) S S

Figure 4-4. DBCP Simplified Block Diagram

4.4.1 Bus Interface Unit

The bus interface unit contains the coprocessor inter-
face registers (CIRs), the CIR register select and DSACK
timing control logic, and the status flags that are used to
monitor the status of communications with the host proces-
sor. The CIRs are addressed by the host processor in the
same manner as memory. All communications between the host
processor unit and the DBCP are performed with standard
M68000 family bus transfers <MOTOl>. The M68000 family
coprocessor interface 1is implemented as a protocol of bus
cycles during which the host processor reads and writes to
these CIRs. The MC68030 host processor implements this gen-
eral purpose coprocessor interface protocol in both hardware
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and microcode.

When the host processor detects a DBCP instruction,
e.g., a join operation, the host processor writes the com-
mand word of the instruction to the memory-mapped command
CIR and then reads the response CIR. In this response, the
bus interface unit encodes requests for service required by
the host processor in order to support the DBCP in perform-
ing the intended database operation. After the host proces-
sor serves the DBCP request(s), the host processor can fetch
and execute subsequent instructions. The coprocessor inter-
face should allow concurrent instruction execution; thus,
the synchronization during host processor and DBCP communi-
cation can be accomplished. Concurrent or nonconcurrent
instruction execution is determined based on the nature of
each coprocessor instruction. While the execution of most
DBCP instructions may overlap with the execution of host
processor instructions, concurrency is completely transpar-
ent to the programmer. Therefore, from the programmer's
view, the host process and the DBCP appear to be integrated
onto a single chip.

It is worth noting that the DBCP does need not run at
the same clock speed as the host processor because the bus
is asynchronous. Due to this aspect, the database management
system performance can be customized. Because the M68000
family coprocessor interface also permits coprocessors to be
bus masters, the DBCP functions as one. That is, the DBCP
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can fetch all tuples or attributes and store all results. In
this manner, the DBCP as a filter device, effectively per-
forms the intended database operation by filtering unneces-
sary data. These types of coprocessors are referred to as
DMA coprocessors. The DBCP DMA coprocessor operates as a bus
slave while communicating with the host processor across the
coprocessor interface. The DBCP may also have the ability to
operate as a bus master, thereby directly controlling the
system bus. This type, based on bus interface capability, is
called non-DMA coprocessors which always operate as bus
slaves. To speed up the data transfers between memory and
the DBCP, the DBCP requires a relatively high amount of bus
bandwidth; therefore, the DBCP needs to be implemented as a
DMA coprocessor. In the end, the DBCP provides all the con-
trol, address, and data signals necessary to request and
obtain the bus, and to then perform DMA transfers using the

bus.

4,4,.2 Coprocessor Control Unit

The control unit of the DBCP contains the clock genera-
tor, a two-level microcoded sequencer, and the microcode
ROM. The microsequencer either executes microinstructions or
awaits completion of accesses that are necessary to continue
executing microcode. The microsequencer sometimes controls

the bus controller, which is responsible for all bus activ-
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ity. The microsequencer also controls instruction execution
and internal processor operations, such as setting condition
codes and calculating effective addresses. The microse-
quencer provides the microinstruction decode logic, the
instruction decode register, the instruction decode PLA, and
it determines the "next microaddress" generation scheme for
sequencing the microprograms.

The microcode ROM contains the microinstructions, which
specify the steps through which the machine sequences and
which control the parallel operation of the functionally

equivalent slices of the filter unit.

4.4.3 Filter Unit

One of the main tasks of the DBCP is to release the
host from tedious database manipulation for the relational
join by filtering tuples that do not have any potential for
inclusion in the resulting relation. To this end, the DBCP
sends only the potential tuples to the host processor. The
filter unit of the DBCP is the heart of the coprocessor in
determining unnecessary data and discarding them. There are
several approaches in implementing a filter device <BANC1,
BABBl1, HSIAl>; however, their fundamental concepts are the
same. These filter devices trap irrelevant data when it is
transferred from the secondary storage device to the main

memory.
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As shown in Figure 4-5, the filter unit of the DBCP
includes an address filter, five functionally different map-
ping hash coders with associated bit array store (BAS) and
associated hash address comparator (HAC), and an AND module
(see Figure 4-6 for more details).

The bit array store (BAS) includes two single-bit wide
random access memories (256 bits RAMs). One RAM (source
RAM) is for tuples in a source relation, and another (target
RAM) is for tuples in a target relation. Each bit in a RAM
is addressed by a hash address. Each BAS is connected with a
hash address register in an associated hash address compara-
tor (HAC). The hash address register is equipped with an
increment function so that the address register will keep
track of the next bucket address to be processed, and will
feed it to the connected BAS. Therefore, each bit array
store has a built-in multiplexer to select the right address
at any time as is shown in Figure 4-7. The controller sends
signals to the control lines of the multiplexer for the
right selection of an address. The controller also sends
memory write signals to both source and target single-bit
wide RAMs. Therefore, when the tuples in the source relation
are scanned, the single-bit wide source RAM is marked based

on the hash address from the hash coder.
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Sth Level Bit Array Store (BAS 5)

4th Level Bit Array Store (BAS 4)

3rd Level Bit Array Store (BAS 3)
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Figure 4-6. AND Module

By the same system, when the tuples in the target rela-
tion are scanned, the single-bit wide target RAM is marked
instead. The single-bit output from the source RAM to the
AND module is examined in order to filter unnecessary target
tuples. When the multiplexer in the BAS selects a hash

address from the corresponding HAC, the hash address is used
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to determine if one of source and target buckets is empty.
This can be done by detecting hash-addressed bits 1if both
the source RAM and target RAM are 'l.' The single-bit out-
puts from the source RAM and the target RAM are then logic-
ally ANDed. The resulting single-bit output is sent to the
corresponding HAC in order to determine whether or not the
tuples in the source and target buckets have to be pro-
cessed. If one of the buckets is empty, then tuples in those
buckets will be eliminated.

The HIMOD database computer adapts the hashed address
bit array stores filtering technique which was introduced in
the Content Addressable File Store (CAFS) database machine

<BABBl1>. This filtering technique has demonstrated dramatic
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improvement in all join algorithms without substantially
increasing hardware cost <DEWI3, QADA2, SHAP1, VALD2,
SCHN1>, Even though there are explicit details about the
hashed address bit array stores filtering technique in Chap-
ter 5, it is necessary, at this point, to explain briefly
how HIMOD filters unwanted data in performing the join oper-
ation.

The HIMOD database computer reads the tuples in the
source relation from a file; in turn, each value of the join
attribute is transformed into five hash addresses by five
functionally different hash coders. To simplify the explana-
tion, it is assumed here that the current stack level is at
the bottom. These five addresses are used to mark the sin-
gle-bit wide source RAMs in the corresponding BASs. Then
the machine reads the target relation, and the five hash
coders again hash each value of the join attribute. By using
the five hash addresses, HIMOD verifies if the hash-ad-
dressed bits in the five source RAMs in the corresponding
BASs have already been set. If all five bits have already
been set, the join attributes of the target relation may
match with those of the source relation, so that those
matched tuples are further processed through the DBCP filter
if necessary; otherwise, they are sent to the host computer
to produce the tuples of the resulting relation, On the
other hand, the unwanted tuples are detected and discarded
by the DBCP, since they will not be included in the result-
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ing relation.

If the join condition attribute is called key K, its
hashed value will be represented as H(K) where H is a hash
function. The mapping hash method assures that each mapping
hash coder in the DBCP generates a statistically independent
hash address. The hash addresses are represented as
M1(H1(K)), M2(H2(K)), M3(H3(K)), M4(H4(K)), and M5(H5(K)),
where H1(K), H2(K), H3(K), H4(K), and H5(K) are different
hashed values, and Ml, M2, M3, M4, and M5 are the corre-
sponding single-bit wide source RAMs. The hash addresses
set the corresponding bits of the source RAMs to 'l.' After
scanning keys and setting up bits in the source RAMs, the
output of the five source RAMs are logically ANDed, when key
K is read from the source RAMs in the BASs. If the output of
the AND gate is 'l,' then the key K is believed to have been
hashed before. Otherwise, key K has not been hashed and it

is possible to set the source RAMs in the BASs.
To write keyword K to the source RAMs in the BASs:

M1(H1(K)) := 1, M2(H2(K)) :

1, M3(H3(K)) := 1,
M4 (H4(K)) := 1, M5(H5(K)) 1

To read keyword K from the source RAMs in the BASs:

M1 (H1(K)) 1 & M2(H2(K)) 1 & M3(H3(K)) =1 &

M4 (H4(K)) 1 & M5(H5(K)) 1
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As assumed, the current stack level is at the bottom in
this case. Thus, the 5 to 1 multiplexer controlled by the
stack pointer register selects the output from the AND gate
(A) in the AND module as shown in Figure 4-6. This output
is sent to the retrieval wunit that determines whether the
tuple is unnecessary or not, based on the output from the
AND module. If the tuple 1is unnecessary, it is discarded
immediately.

The discussion above shows how the hashed address bit
array stores filtering technique works in the HIMOD database
computer. The hardware structure that enhances this filter-
ing technique also should be explained. The architecture of
the DBCP is characterized by a stack oriented structure of
the five BASs. If there are any bit array stores lower than
the current BAS, they are saved in the stack and deactivated
during the filtering process. The current and higher-than-
current BASs participate in the filtering process. The con-
tents of participating BASs are cleared first and the bits
in the BASs marked as the hash addresses are then produced.
When a BAS is saved in the stack, a file or a list of input
tuples are divided and distributed into the addressed buck-
ets in the hash table according to the prior level hash
coder in the stack. The divided list of source tuples and
the 1list of target tuples are passed through the filter
again using the current and higher BASs if their join condi-
tion attributes are not detected as identical. Thus the
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source and target relations are divided repeatedly, discard-
ing unwanted tuples, until the DBCP determines that the par-
titioned lists of the source and target tuples have the same
join attribute. Ultimately the partitioned lists of the
source and target tuples are sent to the host processor for
final screening and then merge in order to produce the
resulting tuples.

To efficiently determine whether or not the scanned
source tuples and target tuples have the same join attri-
bute, a hash address comparator (HAC) is attached to each of
the five hash coders. The HAC is designed so that it sends a
signal to the controller to stop dividing the tuples, as is
explained below.

The HAC consists of an address register (or hash
address register) which keeps a record of the first hash
address produced by the corresponding hash coder and the
number of exclusive-OR gates, the OR gate, and the JK flip-
flop. Each incoming hash address is compared with the first
produced hash address, as illustrated in Figure 4-8.

In order to load the first hash address, a controller
sends a signal ('1l') to load the first produced hash address
into the hash address register. Once the first hash address
is loaded, the controller does not allow other hash

addresses to be loaded into the hash address register.
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In each HAC, the same number of exclusive-OR gates, as
the number of bits in a hash address register, are needed.
The first bit of the address loaded in the hash address reg-
ister and that of an incoming hash address are inserted into
the first exclusive-OR gate. If both are the same, the out-
put of the exclusive-OR gate is '0.' If they are not the
same; that is, if one input bit is 'l' and another is '0,'

then the output is 'l,' and it is passed to the OR gate.

-122-



The OR gate simultaneously receives all the resulting output
signals from those exclusive-OR gates. If all of the result-
ing bits are '0,' the output of the OR gate is '0,' indicat-
ing that both hash addresses are identical. If at least one
of the resulting bits from the exclusive-OR gates is '1l,’
then the output of the OR gate becomes 'l,' signifying that
the 1loaded hash address in the address register and the
incoming hash address are different. Then the output ('l')
of the OR gate triggers the K input of the JK flip-flop (The
output of the JK flip-flop is initially cleared to be 'l' by
the controller.), so the output of the JK flip-flop becomes
'0." Therefore, the five structurally identical hash
address comparators in the DBCP generate output signals at
the same time.

The hash address comparator (HAC) has a second purpose.
If the HAC is pushed into the stack, the hash address in the
HAC is used to keep track of the next bucket address to be
processed. Just before the HAC is pushed into the stack, the
hash address register is cleared by the controller. The
first hash address is, therefore, '0,' and the bucket zero
is examined if it is empty. The inverted signal from the
connected BAS tells whether or not both the source and tar-
get buckets are empty. If at least one of the buckets is
empty, and if the controller allows it, the inverted signal
('1') increments the hash address register. This increment-
ing process is repeated until a pair of non-empty buckets is
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found. Before the source and target tuples in those buckets
are further processed, another pair of non-empty buckets is
found and the bucket address is stored in the hash address
register. This bucket address is stored in the stack for
later use. As a result, when the HAC is stored 1in the
stack, the associated hash address register is used to store
the next non-empty bucket address.

The hardware for hash address comparison, required to
detect whether all the join attributes in a file or list are
identical, merits elucidation. The purpose of this hardware
is to inform the controller whether or not the input file or
list should be divided further. If so, the DBCP eventually
sends the source, and target tuples having the same join
attribute, to the host processor for concatenation. As
shown in Figure 4-9, the five hash address comparators are
stacked. Based on the value 1in the stack pointer register,
the 5-to-1 multiplexer selects one from the five inputs.
When the stack pointer designates the first, i.e. 1lowest,
stack level, all the outputs from the HACs are ANDed, and
the resulting output of the AND gate (A) 1is selected by the
multiplexer. If the stack pointer specifies the second stack
level, the first BAS is saved in the stack and is not writ-
ten until the controller sends a memory write signal to the
BAS. The output of the first HAC is, therefore, excluded
from the inputs into the AND gate (B), and outputs of the
second, third, fourth, and fifth HACs are ANDed.

-124-



5th Level Hash Address Comparator (HAC 5)
4th Level Hash Address Comparator (HAC 4)
3rd Level Hash Address Comparator (HAC 3)
2nd Level Hash Address Comparator (HAC 2)

lst Level Hash Address Comparator (HAC 1)

D C B A

| TTTY

From
Stack 3 5 to 1 Multiplexer
Pointer

19

% FF | N To Controller

CLR >

Figure 4-9. Condition Code for Checking if Only
One Kind of Hash Address is Produced

Likewise, if the indicated stack 1level is the third level,
the first and second BASs are saved 1in the stack and the
multiplexer chooses the output of the AND gate (C), which
receives the outputs from the third, fourth, and fifth HACs
as inputs. I1f the indicated stack level is the fifth and
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highest level, the four lower level BASs are saved and the
multiplexer selects the output directly from the fifth level
HAC.

The single bit output from the multiplexer triggers the
attached JK flip-flop if, after a whole input file or list
has been scanned, all the HACs, which are equal or higher
than the current stack level, indicate that only one kind of
hash address has been produced from each hash coder. The
output value of the JK flip-flop is then sent to the con-
troller. The controller, based on the value from the JK
flip-flop, then decides either to continue a division pro-
cess or to require a conquer process. In the conquer pro-
cess, the controller sends the list of the tuples which are
not filtered to the host processor for a merge.

Even though the output signal indicates that no further
division process 1is necessary, there is approximately one
chance in a trillion (1/256**5) that the signal will pass an
unwvanted key. The final screening with direct comparisons by
the host processor will eliminate the spurious key, if it is
present. Because this chance is extremely small, the host
processor will not waste time dealing with unnecessary data.

The whole filter unit is designed to support the divide
and conquer strategy in performing the join relational data-
base operation. The major concern, in the full divide and
conquer strategy in the join, 1is to know when no further
division of input is necessary. The group of hash address
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comparators determines whether or not the scanned tuples
have the same join attribute, and provides information to
the controller concerning further division process or send-
ing the desired tuples to the host processor.

The major operation in the filter unit is hashing for
dividing and filtering tuples. A maximum five hash coders
may participate in producing hash addresses in parallel. 1If
this filter device (DBCP) is implemented as a software back-
end, the hash addresses are calculated serially, one after
another, wusing a slow software hash coder. As discussed,
the mapping hash coder implemented in software produces a
hash address about 32 times slower than the mapping hash
coder implemented in hardware. Additionally, because the
software back-end has to calculate five hash addresses in
serial, it may be 160 (32*5) times slower than the hardware
back-end in the computation of hash addresses.

Both the parallel architecture of the hardware back-end
DBCP for the five hash coders and the parallel architecture
of each hash coder can drastically reduce the execution time
of the join. Since the software back-end cannot take advan-
tage of the speed of parallel processing, it is recommended

that the DBCP should be implemented as a hardware back-end.
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CHAPTER 5

A NEW HASH-BASED JOIN ALGORITHM

In the previous chapter, the hashed address bit array
store filtering is mentioned because the architecture of the
DBCP is designed to support the filtering technique. The
first section of this chapter contains additional discussion
on the hashed bit array store filtering technique. The sec-
ond section explains how the stack oriented filter technique
(SOFT) improves the filtering effect. Based on the SOFT, a
new join algorithm is developed and illustrated in the third
section. The simulation of a new join algorithm is per-
formed; the results and statistics of this simulation are
shown in the fourth section. Because other relational data-
base operations, such as project, union, difference, and
intersect, have hashing in their nature, the last section
discusses how these operations also can utilize the hash

coder in the DBCP effectively.

5.1 Limitation of Hashed Bit Array Store Technigue

A problem called hashing collision, associated with the
hashing technique, occurs when more than one key applied to
the same hash function generates the same hash address. To
minimize this problem more than one functionally different
hash coder is used, as was explained in the previous chap-
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ter. The major problem of the hashed address bit array store
technique takes place when the source relation--smaller than
the target relation--is very large. A one shot filtering
scheme of the hashed address bit array store does not elimi-
nate all of unwanted data; therefore, the host processor has
to carry the burden. The following discussion shows how the
problem of the hashed address bit array store filter tech-
nique arises in the DBCP architecture.

As shown in Figure 4-5, the DBCP has five different
hash coders. Each key or join attribute value is transformed
into five hash addresses by the five functionally different
hash coders. Furthermore, the five hash addresses are used
to mark single-bit wide source RAMs in the corresponding bit
array stores (BASs). The chance that two different keys will
have five pairs of identical hashed values is extremely
small if five statistically independent mapping hash func-
tions are used. However, the hashed bit array store tech-
nigque on its own still allows for the existence of spurious
keys. This problem can be explained using Figure 5-1, which
shows that key K1 in a tuple of the source relation A is
mapped to five addresses denoted by M1(H1(Kl)), M2(H2(Kl)),
M3(H3(K1)), M4(H4(Kl)), and M5(H5(K1l)). The next tuple in
the source relation A contains key K2, which is mapped to
M1(H1(K2)), M2(H2(K2)), M3(H3(K2)), M4 (H4(K2)), and
M5(H5(K2)). Key K3 in a tuple of the target relation B is
transformed by the same five hash functions to generate five
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Keys of Source Relation A

K3 K4 K5
(spurious key) (wanted key) (unwanted key)

Keys of Target Relation B

Figure 5-1. Key Mappings

hash addresses. Then the bits in M1(H1(K3)), M2(H2(K3)),
M3(H3(K3)), M4(H4(K3)), and M5(H5(K3)) are read. Unfortu-
nately, all five bits are examined to be 'l' due to the bits
set by mappings of K1 and K2. Thus, K3 is regarded as a

join attribute and matched with a join attribute of some
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particular tuple in the source relation A. In reality, K3 is
neither K1 nor K2, but is a spurious key. Key K& is, on the
contrary, a wanted key, and its associated tuple will be
concatenated with the tuple of key K1 by the host processor
after a final screening. Key K5 will be discarded as soon as
the logical AND value of five bits from the source RAMs is
detected to be zero due to M&4(H4(K5)) = '0'.

There will be more spurious keys when many bits in Ml,
M2, M3, M4, and M5 source RAMs become 'l' after a large size
source relation has been scanned. Therefore, this problem is
an inherent data-size dependent problem of the hashed
address bit array store filtering technique. If an actual
merge is performed on the passed tuples, the resulting rela-
tion may include errors. As explained, the errors are caused
by collisions due to hashing. As a result, the host proces-
sor has to spend time discarding spurious tuples by tedious
key comparisons. The next section shows how HIMOD overcomes
the spurious key problem using the stack oriented filter

technique.

5.2 Stack Orient Filter Technique

As discussed in Chapter 4, the stack oriented filter
technique (SOFT) is the main idea used in a new join algor-
ithm. Internally, there is a stack containing five items,

each of which is virtually a bit array store (BAS). At the
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beginning, the 1lowest BAS is the item at the top of the
stack. The stack pointer keeps track of the top item of the
stack or the current BAS, since another BAS may be added
onto the top of the stack and the current BAS may be deleted
from the top of the stack.

Several primitive operations in the stack data struc-
ture, such as push, pop, and Bottom Of Stack, are provided
for use in the new join algorithm. With five BASs, the upper
limit in the stack is five. Therefore, it is not allowed to
push another BAS (item) when five BASs are already stacked.
The operation Bottom_Of_ Stack indicates if the stack pointer
points to the 1lowest BAS in the stack. In this situation,
the pop operation cannot be applied to the stack because the
stack in the SOFT keeps at least one BAS,

In the process of the join, there might be three dif-
ferent types of BAS (as shown in Figure 5-2): Current BAS,
Saved BAS, and Available BAS for the hashed address bit
array store filtering technique. The current BAS is the one
that is pointed to by the stack pointer, and it 1is also
involved in the hashed address bit array store filtering
technique. The input tuples are stored in the addressed
bucket by the hash coder, which is connected to the current
BAS.

The source RAM in every BAS has 256 bits. And if the
value of i-th bit of single-bit wide RAM 1in either current
or saved BAS is 'l,' the i-th bucket is not an empty bucket,
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Available BAS for Filtering Technique

sp -> S=ES=sSSSSSESCSCSSSEES S SRS ESCSSSSEEESSEXSSE==S=S
(Stack Pointer)
Saved BAS in the Stack (The Second Pushed)

Saved BAS in the Stack (The First Pushed)

Figure 5-2. Stack Configuration after Two Items are Pushed

and its corresponding subset file or subset linked list con-
tains collected tuples. On the other hand, if the value of
the i-th bit is '0,' there has been no key in the target
inputs addressed to this bucket by an affiliated hash coder;
thus, no tuple is stored in this bucket. After the source
and target relations are scanned, the lowest BAS has infor-
mation for key distributions of these inputs. If both input
relations are too large to fit into the main memory, they
are divided into a maximum of 256 subset files for each
relation by the associated hash coder of the lowest BAS, as
is shown in step 1 in Figure 5-3.

If each BAS produces only one hash address in an entire
scanning of keys, an output from the five hash address com-
parators sends a signal to the controller indicating that

almost all the unnecessary tuples have been filtered, as was
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discussed in Chapter 4. In this case, although extremely
rare, all the tuples in the source and target subset files
are sent to the host processor for merging. Otherwise, it is
obvious that unnecessary or matchless tuples can be included
in the i-th source and target subset files, since the SOFT
filters those unnecessary tuples efficiently. It also is
clear that the tuple(s) of the i-th source subset file might
have matched tuple(s), if there are any, only in the i-th
target subset file.

Next the i-th (0<=i<=n=255) nonempty source and target
subset files will be divided again by the SOFT. However, the
next subset files, after the i-th, should be saved along
with the lowest BAS for subsequent processing. Since the
current BAS is pushed onto the stack, the second BAS becomes
the current one. Using the three upper BASs and the current
BAS, the keys of the i-th source and target subset files are
again hashed by the four functionally different hash coders.
Those tuples, which are passed through hashed address bit
array filter, are then stored in the hash-address buckets by
the hash coder associated with the second BAS.

As shown in Step 2 of Figure 5-3, a hash table which
has source(S) and target(T) pointers, to either a linked
list or a null in each bucket, will be created. If each one
of the four BASs used in the filtering process produces only
one hash address in the entire scanning of keys, an output
from the four hash address comparators sends a signal or
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condition code to the controller. This condition code indi-
cates that it is all right to send the tuples in a pair of
source and target lists to the host processor for merging.
The SOFT then returns to Step 1 in order to process the next
subset file. It quits if no subset file remains.

If no signal comes from the four hash address compara-
tors, the tuples in the ij-th (0<=j<=n=255) source and tar-
get linked lists (which has tuples) need to be divided
again. The current BAS is pushed onto the stack; thus, the
third BAS becomes the current one. Using the upper two BASs
and the current BAS, the keys of the ij-th source and target
linked lists are hashed by the three functionally different
hash coders. Those tuples, which are passed through the fil-
ter, are stored in the hash-addressed linked 1lists by the
third hash coder, as was shown in Step 3 of the Figure 5-3.

Step 4 and Step 5 in Figure 5-3 can be explained simi-
larly. In Step 6, no available BAS is left, and unnecessary
data have been filtered; therefore, the source and target
tuples are sent to the host processor without filtering.

As far as data structure is concerned, the linked list
data structure is better than the array data structure for
the buckets 1in steps 2 through 5 in Figure 5-3 because in
these steps most of the buckets may be empty. Therefore, by
using the linked lists for the buckets, memory space can be
conserved.

The SOFT can be implemented in a recursive routine, so
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that bit array stores are structured as elements of a stack.
The nature of recursion in the SOFT simplifies the architec-

tural structure of the DBCP in HIMOD.

5.3 The New Join Algorithm

The fundamental data structure used in the new join
algorithm is a stack, as explained in the previous section,
because the design of this join algorithm is based on the
stack oriented filter technique (SOFT). Push and pop are
the names of procedures operating in the stack: push inserts
a bit array store (BAS) onto the top of the stack, and pop
deletes another from the top. The stack pointer always
points to the current BAS--the item at the top of the stack--
-by incrementing its value when pop is called. By referring
to the value in the stack pointer, the function Bot-
tom_Of Stack can tell whether the stack pointer points to
the first or lowest BAS as the current item of the stack.

In the new join algorithm, as shown in Figure 5-4,
there are several other frequently used procedures such as
Assign_Source_And_Target, No_More_Next_Bucket_Addr, and
Save_Next_ Bucket_Addr. The module Assign_Source_And_Target
uses the header pointers of both source and target linked
lists based on the saved next bucket address of the current
BAS (or HAC) in order that the tuples in the linked lists

are processed through the filter again. As explained in
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Chapter 4, each BAS in the DBCP has a connected hash address
register in the associated hash address comparator (HAC).
Each next bucket address is saved in the hash address regis-
ter and 1incremented to keep track of the next bucket
address. Whenever the procedure Assign_Source_And_Target is
called, another next bucket address, which has the value '1'
for the resulting output of ANDed bits, from the source and
target RAMs in the current BAS, is found by the procedure
termed Save_Next_Bucket_Addr. This procedure also saves the
next bucket address for the next process which is combined
with the current BAS,. Then the procedure push saves the
contents of the current BAS and increments the stack pointer
in order that the next upper BAS becomes the current BAS or
top of the stack.

When pop is called, the stack pointer is decremented in
order that the BAS directly under the current BAS becomes
the current BAS. After the pop, the boolean function
No_More_Next_Bucket_Addr should be called in order to see if
there is any saved next bucket address in the hash address
register in the current BAS--generally, and in the current
HAC--specifically. If there are none, the current BAS is
checked to see if it is the first or lowest BAS. If so, the
join process is terminated by breaking the repeat loop.

The algorithm shown in Figure 5-4 1is an explanatory
version of the main module of the simulation program. After
an appropriate initialization process (1) (including finish
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¢= true), the algorithm reads the two input files for source
and target relation from the secondary storage (2). Then
there is a large repeat loop (3) starting with clearing the
current and upper available BAS(s) for use in the hashed
address bit array store filtering technique (4). Next, the
algorithm scans the tuples in the source linked 1list or
(subset) file, by hashing their join attributes and setting
up hash-addressed bits in the corresponding BAS (5). The
source tuples are divided by the hash coder of the current
BAS, and stored in the addressed bucket (linked list). Then
the algorithm hashes the join attributes of the target
tuples in the 1list; the algorithm then detects and elimi-
nates unnecessary tuples by examining the ANDed result of
all the BAS(s) involved 1in the hashed address bit array
store filtering process (5). The target tuples, which are
not filtered 1in this step (5), are saved in the buckets
which are addressed by the hash coder associated with the
current BAS.

There is an if-statement (6) testing if the produced
hash addresses are all identical, by examining the condition
code set by the hash address comparators as in HIMOD. If
so, headers of source and target linked lists (or subset
files) are sent for merge (8). The algorithm checks if there
is a next bucket address (9). If so, it assigns headers of

source and target linked lists in the next bucket address to
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begin
Initialization;
Form_Source_And_Target_Relations;
repeat
Clear_Current_And_Upper_BASs;
Hash_Source And _Target_ Relations;
if Only_One Hash Address _Produced_In_Each_HAC then
begin
Merge_Tuples_And_Output;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_ Stack then
finish := true
else
begin
pop;
if No_More_Next_ Bucket_Addr then
begin
if Bottom_Of_Stack then
finish := true
else
begin
pop;
if No_More_Next_Bucket_Addr then
begin™
if Bottom_Of_Stack then
finish := true

else
begin
pop;
if No_More_ Next_ Bucket_Addr then
begin
if Bottom_Of_ Stack then
finish := true
else
begin
pop;
if No_More_Next_Bucket_Addr
then begin™

if Bottom_Of_Stack then

finish := true

else

begin
Assign_Source_And_Target;
Save_Next Bucket Addr-
pushj

end;

Figure 5-4. The New Join Algorithm in Pascal
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end;
end;
end
else
begin
Assign_Source_And_Target;
Save_Next Bucket Addr-
push;
end;
end;
end
else
begin
Assign_Source_And_Target;
Save Next Bucket Addr'
push;
end;
end;
end
else
begin
Assign_Source_And_Target;
Save_Next_ Bucket Addr-
pushj
end;
end;
end
else
begin
Assign_Source_And_Target;
Save_Next Bucket Addr-
push;
end;
end
else
begin
Assign_Source_And_Target;
Save Next Bucket Addr-
push;
end

(87) until finish;

(88) end.

Figure 5-4. Continued

two temporary pointer variables

for the

filtering process

(76). Then the next bucket address--in the next address reg-
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ister of the current BAS in HIMOD--is incremented until
another bucket address which is 'l' in its content in the
current BAS is found (77). If no such next bucket address
is found, it assigns a null value to the next bucket
address. After that, it pushes the current BAS onto the
stack, and goes back to the beginning step of the repeat
loop, starting with clearing the current and available BASs
(4), and then hashes the source and target tuples in the
assigned lists in the line 76 (5).

In line 9, if there is no next bucket address, then the
algorithm checks to determine if the current BAS is the
first (lowest) BAS (l1l1). 1If so, it assigns a true value to
the repeat condition variable finish (12), and the join pro-
cess is terminated. If a BAS(s) is saved, then the algor-
ithm pops the BAS (15) and checks if there is a saved next
bucket address which is not a null value (16). If there is a
next bucket address, then the algorithm performs the same
sequence as explained for lines 76, 77, and 78 (68, 69, and
70) wusing the next bucket address as the bucket address of
the current BAS. If there is no next bucket address, the
algorithm either pops the stack (22) or assigns a true value
to the variable finish (19) if the current BAS is the lowest
item of the stack (18).

There are several nested if-then-else statements that
include the same code patterns. Accordingly, this algorithm
also can be implemented using a recursive routine. Since the
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stack can have only five items, maximum, this non-recursive
algorithm is useful and can be implemented easily in the

controller (ROM) of the DBCP in HIMOD.

5.4 Simulation Results:

A Comparison with the Conventional Join

The simulation has been performed on an IBM 4381 main-
frame computer. The 1listing of the simulation program in
Pascal is outlined in the Appendix. The set resulting from
the combination of the 1,024 generally chosen names-data set
and the 1,024 randomly chosen names-data set are used as one
data set. Both name-data sets are the same data sets used in
the experimentation for hash functions. The combined data
set contains 2,048 name tuples, which is read into the sys-
tem in order to create both the source relation and target
relation. As each tuple is scanned, the initial letter of
the last name is compared to the discriminator character
variable. For example, if the discriminator is set to be
"K," then the name tuples whose last name initials are from
"A" to "K," are inserted into the source relation, while all
others will be inserted into the target relation, e.g., "L"
to "Z." For each name, the last name is used as a join con-
ditional attribute, and the hash address is calculated using
only the last name. The whole name is used to produce a hash

address in the hash algorithm experiments. After creating
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the source and target relations, the equi-join operation is
performed on those 1input relations in order to produce the
resulting relation for the join. The source, target, and
correct resulting relations are printed as proof that the
algorithm logically works.

As shown in Table 5-1, the number of tuples brought
into the processor 1is selected as the major measurement of
overall performance, although there are other factors to be
considered, such as the number of disk accesses and 1/0
time. Since more data movements might create frequent disk
accesses, which will in turn slow the join operation, the
fewer number of tuples brought into the CPU, the shorter the

response time will take for the join.

Number of tuples No. of tuples
in relations brought into
the Processor
Discri- New Join Nested-
minator Using Loop
Source  Target Resulting the SOFT Join
A 155 1,893 355 2,426 293,415
E 646 1,402 919 3,795 905,692
G 799 1,249 902 4,095 997,951
K 1,196 852 846 4,419 1,018,992
v 1,961 87 205 2,902 170,607
Sums: 17,637 3,386,657

Table 5-1. Number of Tuples Brought into the Processor
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In this particular case, on average, the new hash-based
join using the SOFT takes about two hundred times
(3386657/17637) less data movements than the conventional
nested-loop join method. The main reason for this contrast
in performance is that the SOFT eliminates all wunnecessary
data--about 99.9999999999%--in the filtering process while
dividing the source and target relations into groups of
tuples so that source tuples in a group will be matched only
with those target tuples in a corresponding group. Removing
unnecessary data, while hashing and dividing, helps reduce
data movements drastically. The conventional nested-loop and
sort-merge, on the contrary, carry around every tuple--even
if most of them are not wanted--all the way to the last
moment before they discover it 1is an unnecessary tuple
through direct comparison of join attributes.

The time complexity of the new Jjoin algorithm is
O(S+T+R) where the number of tuples in the source relation
relation is S, the number of tuples in the target relation
is T, and the number of tuples in the resulting relation is
R. This time complexity is actually the same with those of
other hash-based join methods, such as simple, GRACE, and
Hybrid. However, the new hash-based join method will outper-
form the aforementioned hash-based join methods because none
of them includes the concept of filtering in their algor-
ithms. Their common method--finding a matched source tuple
for an incoming target tuple--entails comparing the join
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attribute of the target tuple with every source join attri-
bute in the hash-addressed bucket, one by one. This repeated
direct comparison slows the system; however, in the new join
method, the direct comparison of the join attributes is only

allowed after all of unwanted data are cast out.

5.5 Other Relational Operations Which Utilize a Hash Coder

5.5.1 Project (Eliminating Duplicates)

After the project relational database operation selects
only those attributes, specified in the attribute list, from
each tuple in the input relation, there may be duplicates in
the resulting relation. For example, in Figure 5-5, there

is relation R and a resulting relation for Project R (B,D).

Relation R PROJECT R (B,D)

o

A B C D B D B

-——>

OO0
w8 o=

. oo
o000
Q =3Q M
=y D
OPQOQO®
=08 o=

Figure 5-5. Example of Project Operation

In the intermittent resulting relation, the second and

the fourth tuples have the same values (4 and h) for the
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attributes B and D, and therefore, duplicate tuples, like
the fourth tuple, have to be eliminated.

DBMSs generally sort the tuples in the intermittent
resulting relation in alphanumerical order. They search and
eliminate unnecessary tuples. To find duplicate tuples in
the sorted relation, two pointers are usually employed to
keep track of the tuples being compared. The values in the
attributes of the tuple pointed by the first pointer are
compared with those of the tuple pointed by the second
pointer. During the comparison process, both of the pointers
are incremented, whenever necessary, until they reach the
last tuple in the sorted relation.

In HIMOD, hashing 1is used instead of sorting for the
project operation by taking advantage of the fast hash
coders in the DBCP. The partial or partial combined value of
attributes in the attribute list--or a folded tuple is used
as a key if a tuple is too long--is hashed by the five sta-
tistically independent hash functions. The HIMOD uses the
five produced hash addresses to examine the hash-addressed
bits in the corresponding BASs. If at least one bit in any
BAS is not set, then no identical tuple has passed through
the filter. Thus, the input tuple is stored in a bucket
based on the hash address produced by the first hash coder.
In this case, it is not necessary to compare the tuple with
previously stored tuples in the hash-addressed bucket. Next
the corresponding bits in the five BASs are marked by the
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five produced hash addresses. If all of the hash-addressed
bits in the five BASs are set, it is possible to have an
identical tuple that has already passed through the filter.
Therefore, the whole input tuple must be compared to the
tuples in the hash-addressed bucket indicated by the first
hash coder. If there is a match, the tuple 1is instantly
eliminated. Then the next tuple 1is brought into the hash
coder for the same process. If there is no match, the tuple
is stored in the bucket. Finally the tuples stored in the
hash table are included in the resulting relation for the
project operation.

The advantage derived from using the DBCP is that it
determines the necessity of tuple comparisons from the
beginning by examining the bits in the five BASs. As a
result, time for comparisons may be, to some extent, saved.

When the intermittent resulting relation does not fit
in the real memory, the relation should be divided into sub-
set files based on the hash address produced by the first
hash coder. Depending on how the main memory is used (e.g.,
as a hash table, output buffers, and both output buffers and
a hash table), the method for project operation might be
different.

Once the intermittent resulting relation is divided
into subset files, tuples in a subset file are hashed, and
the hash addressed bits in corresponding BASs are examined
to determine whether the tuple is to be stored 1in the hash
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table or discarded. After one subset file is finished,
another subset file 1is processed until no subset files

remain.

5.5.2 Union

The hash coder in the DBCP can be utilized efficiently
in performing the UNION operation (U). As shown in Figure
5-6, the source relation (Rl) is first read from the secon-
dary storage. I1f the source relation R1 does not fit in
main memory, the tuples--a folded tuple or some portion of a
tuple is used for a key if a tuple is too long--in Rl should
be divided into subset files (S0, S1, ... , Sn-1) by the
first hash coder. The target relation R2 1is also divided
into subset files (TO, Tl, ... , Tn-1) by the same hash
coder. After the division process, the tuples in the first
source subset file (S0) are hashed by the five hash coders
in the DBCP. The hash-addressed bits in the corresponding
BASs are set, and the tuples are stored in the hash-ad-
dressed bucket in main memory. Then the tuples in the first
target subset file (T0) are hashed by the same five hash
coders in the DBCP, and the five bits in the five BASs are
examined to detect the probability that the same tuple
already has passed through. If all five bits are set, it is
probable that an identical tuple is in the SO. Thus the

hash-addressed bucket is searched for a match by the first
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hash coder. 1In this process, the whole tuple is compared as
a key. If there is a match, the target tuple, e.g., 5 a and
1l b in Figure 5-6, is eliminated immediately. Otherwise, the

target tuple should be included in the resulting relation.

Relation Rl Relation R2 Rl U R2
5 a 5 a
3 a 10 b
9 a 15 c
1 b 2 d
2 b 6 a
4 b 1 b

wyw
ANGIORNKF VWY
[ 2N TR ol ok ol ol o 2 V IRV I )

Figure 5-6. Example of Union Operation

After the last tuple in the target subset file is pro-
cessed, the contents of the five BASs are cleared for the
second subset files of source (S1) and target (Tl) rela-
tions. The same process is repeated for the second subset
files, and all subsequent files until all files have been
processed. If there is sufficient main memory space, it is
not necessary to divide the relations; in this case, the
same process for each subset file 1is applied to the whole

input file that resides in main memory.
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5.5.3 Difference

The executional process of difference relational data-
base operations (-) approximates that of the union operation
discussed in the previous section. As shown in Figure 5-7,
the source relation Rl is first read from the secondary
storage. If the source relation does not fit in main memory,
it should be divided into subset files (S0, S1, ... , Sn-1)
by the first hash coder. By the same hash coder, the target
relation R2 is also divided into subset files (TO, T1, ... ,
Tn-1). After the division process, the tuples in the first
source subset file (S0) are hashed by the five hash coders
in the DBCP. Some portion of a tuple or a folded tuple is
used for a key if a tuple is too long. The hash-addressed
bits in the corresponding BASs are set, and the tuples are
stored in the hash-addressed bucket in main memory. The
tuples in the first target subset file (TO0) are hashed by
the same five hash coders in the DBCP; the five bits in the
five BASs are then examined to test the possibility that the
same tuple has already passed through., If all five bits are
set, an identical tuple in the S0 is probable. In such an
instance, the hash-addressed bucket by the first hash coder
is probed for a match. 1In this process, the whole tuple is
compared as a key. If a duplicate is found, e.g., 5 a and 1
b tuples in Figure 5-7, both source and target tuples are

eliminated from the addressed-bucket. Otherwise, the target
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tuple is stored in the hash-addressed bucket. Eventually,

the tuples remaining in the hash table make up a resulting

relation.

Relation Rl Relation R2 Rl - R2
5 a 5 a 3 a
3 a 10 b 9 a
9 a 15 c 2 b
1 b 2 d 4 b
2 b 6 a
4 b 1l b

Figure 5-7. Example of Difference Operation

5.5.4 Intersect

The executional process of the intersect operation (&)
is similar to the 3join operation. A portion of an input
tuple or folded form of a tuple is considered to be a key if
the tuple is too long. If the source relation does not fit
into the main memory, it must be divided into subset files
by using buffers based on the hash addresses resulting from
the first hash coder. Every tuple in the source subset file
(s0) is hashed and the hash-address bits in the five BASs
are marked. Then the tuples in a target subset file (T0) are
hashed, which causes an examination of the corresponding
bits in the BASs. If at least one bit is not set, the tar-
get tuple has no potential to be included in the resulting
relation; thus, it is eliminated immediately. Otherwise, the
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hash-addressed bucket is probed for a match. If there is a
match, the tuple is included in the resulting relation,

e.g., 5 a and 1 b tuples in Figure 5-8.

Relation Rl Relation R2 Rl & R2
5 a 5 a 5 a
3 a 10 b 1 b
"] a 15 o]
1l b 2 d
2 b 6 a
4 b 1 b

Figure 5-8. Example of Intersect Operation

After hashing tuples in the first pair of subset files
(s0 and TO), the five BASs are cleared and all the source
tuples in the hash table are eliminated. The same procedure
is repeated for the second pair of subset files (S1 and T1)
and for all subsequent pairs. The matched tuples are accu-

mulated in the resulting relation during those processes.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The previous sections addressed the necessity of data-
base computer development since conventional computers are
not inherently optimized for nonnumeric processing. Due to
the advantages of the relational data model, the relational
data model has been chosen for most of the database
machines. The major problem with relational database
machines, however, develops from the frequently used and
time-consuming join operation. Thus, it is apparent that
accelerating the join operation will improve the performance
of relational database systems.

As described in Chapter 2, there are three major join
algorithms: the nested-loop algorithm, the sort-merge algor-
ithm, and the hash-based algorithm. The nested-loop and
sort-merge algorithms were used in many database computers
during the early stages of database machine development.
After Babb's hashed bit array stores <BABBl> was introduced,
researchers began recognizing the importance of the filter-
ing technique <DEWI3, QADA2, SHAPl, VALD2>, Combining hash-
ing and filtering technigues would appear to be an ideal
approach. Although Goodman <GOOD1> and several other

researchers have taken advantage of Babb's hashed bit array
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stores filtering technique, the ideal filtering process has
not yet been fully explored.

This dissertation outlines an ideal approach for fil-
tering, and discusses the highly modular relational database
computer, HIMOD, equipped with a single chip back-end pro-
cessor for the join operation. The parallel multiprocessing
was not chosen for this study due to its complex synchroni-
zation problems and lack of cost effectiveness. However, in
future research it would not be excluded from the study. 1In
the course of this dissertation research, a single join
back-end processor with specialized hardware which maximizes
the filtering effect during the hashing process has been
developed.

The join database back-end processor (DBCP) is a stack
oriented filter device. Five statistically independent hash
coders within the DBCP have an associated bit array store
(BAS) and an associated hash address comparator (HAC). The
stack pointer always points to the current BAS. The BASSs
that reside below the current BAS are saved in the stack for
later use as marks for empty and non-empty buckets. The cur-
rent BAS, and the BASs above the current one, participate in
the hashed address bit array store filtering process. The
hash coder, attached to the current BAS, produces hash
addresses for the tuples to be stored in the addressed
bucket. Thus the five BASs are used as elements of a stack
so that the stack oriented filter technigque (SOFT), dis-
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cussed in Chapter 5, 1is applied wusing the five BASs in the
stack in three different ways (e.g., current BAS, saved BAS,
and available BAS) for filtering technique. My development
of new hash-based join algorithm is based on this technique.

The distingquishable difference between the new join
algorithm and other hash-based join algorithms (such as
straightforward, simple, GRACE, and Hybrid) is that, in the
new hash-based join algorithm, the filtering process is com-
bined with the hashing process. Accordingly, unnecessary
data are detected and filtered by the hashed address bit
array store filtering technique while other join algorithms
carry unwanted tuples up to the last moment of join attri-
bute comparisons.

The new hash-based join algorithm repeats this division
and filtering process many times in a recursive way; there-
fore, nearly 100 percent of unnecessary tuples are filtered.
The tuples that are 1left after the filtering process are
sent to the host processor for final screening and merging.
The transmitted source and target tuples are then merged in
order to produce an output for resulting relation. After
repetitive division and filtering processes, the remaining
tuples in the source and corresponding target 1list have an
extremely high probability of having identical join attri-
butes. All other tuples are eliminated before unnecessary
comparison of their join attributes begins. This elimina-
tion of unnecessary tuples substantially reduces the number
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of join attribute comparisons. As a result, total data
movements in performing a join are radically diminished.

Although the CAFS's hashed address bit array store fil-
tering technique is adapted by the HIMOD, use of the CAFS
filter device, which resides between the secondary storage
and the main memory, would still improve the overall system
performance. If CAFS dramatically improve all join algor-
ithms <DEWI3, QADA2, SHAP1l, VALD2, SCHNl1>, then adding the
CAFS I1/0 filter to the HIMOD database computer would result
in an even faster relational join. Thus, this addition of
the CAFS 1/0 filter is strongly recommended.

The output of the join simulation program shows that
the new hash-based join algorithm is logically correct. Fur-
thermore, the number of tuples passed through the processor
in the simulation manifests how effectively the new join
method has cut down data movements as compared to conven-
tional methods.

The new join method can be divided into two processes:
the filtering process and the merging process, with final
screening. In the HIMOD database computer, the filtering
process is performed by the database coprocessor (DBCP), and
the merging process is executed by the host processor when-
ever it receives source and target 1lists of tuples from the
DBCP.

The HIMOD uses a Motorola 68030 microprocessor
(MC68030) as the host processor, and the DBCP communicates
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with the host processor through a protocol defined as the
M68000 coprocessor interface <MOTOl>, The DBCP may be
designed as either a software back-end or a hardware back-
end. For a software back-end, the MC68030 can be used and
the filtering process of the new join algorithm is thus
implemented in software. In order to save the cost of
developing a new coprocessor, one must sacrifice the speed
of the 3join because the software back-end takes about 160
times 1longer in the filtering process than the newly
designed hardware back-end.

The architecture of the hardware back-end has been
illustrated in Chapter 4. The illustration outlines the
design of the stack oriented filter device which efficiently
filters unwanted data. The major operation of the DBCP in
filtering data 1is hashing: five hash coders in parallel
produce five hash addresses. Each hash function should be
statistically independent; therefore, it is important that
the five hash addresses from a key are not related to each
other.

In Buchholz <BUCH1> and Lum's <LUM1> review of hash
functions, they recommended the division method as the best.
Knuth 1later concluded that none of the hash methods has
proved to be superior to simple division and multiplication
methods <KNUT1>, This statement is generally accepted as
true in circumstances where distribution performance is
essential and hash address calculation time is not.
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Because huge amounts of data must pass through the hash
coder in the DBCP, the hash address calculation in the DBCP
should be very fast. In order to speed up the hash address
computation, efforts should be concentrated on designing a
new hash function that will avoid time-consuming serial and/
or iterative computations while taking advantage of parallel
processing, by means of hardware, for converting a key into
a hash address. Moreover, the new hash algorithm should
distribute random keys 1into buckets as uniformly as possi-
ble. The ideal hash function design for this database
application 1is data-independent, and calculates a hash
address within a few machine cycles with relatively good
distribution. The new mapping hash method which has been
outlined in this dissertation, 1is one that satisfies these
requirements if it is implemented in hardware. The mapping
hash method involves the combination of the mapping or con-
verting of each character in a key to a corresponding prime-
number or random-number technique and the folding technique.

Most of the well known hash functions, and several new
ones, including mapping, shift-fold-encoding, Hu-Tucker
code, and new versions of fold-shifting, are surveyed in
this dissertation. Any necessary hardware aids are supplied
during the implementation of the hashing process in order to
increase the speed of the address calculation. Each hash
function has been simulated and applied to two different
name data sets (RCN and GCN) and one numeric string data set
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(RNS) to produce distribution performances measured in terms
of mean square deviations. The speed of calculating a hash
address is measured 1in terms of clock cycles for each hash
function in both the hardware and software implementation
cases. The cost of the hardware implemented hash coder may
be calculated and stated in terms of the number of gates
used.

As the results illustrated in Table 3-1 indicate, the
mapping hash method satisfies all three requirements at the
highest rank. Moreover, this strategy also has advantages in
generating statistically independent hash addresses during
the same period of address calculation time by designating
different sets of prime or random numbers for each hash
coder. The Fold-shifting hash methods such as FS(0,10,20,30)
and FS(0,11,22,25) have problems in finding three more simi-
lar types of statistically independent hash functions with
relatively good distribution; nonetheless, they are fast and
inexpensive. Both Maurer and Berkovich present new hash
methods that have proved to be proficient in distribution
performance. Their methods, however, have not been chosen
for this specific application due to their relatively slow
hash address calculation speeds.

This dissertation research has produced the development
of a new join algorithm and new hash functions. This new
join algorithm will shorten the time needed for a join,
since it goes through frequent filtering processes to dis-
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card unnecessary data efficiently. In turn, the more main
memory space that is available, the more powerful this join
method will be. The new mapping hash function will help
speed the hash-based join algorithm and other hashing appli-
cations because parallel processing is used in the hardware
hash coder in order to calculate a hash address in three
clock cycles. Furthermore, the mapping hash method distrib-
utes keys effectively, compared to other well-known methods.
The mapping hash method is also sensitive to every character
in a key producing a hash address; that is, it does not have
a data dependency problem in its distribution of similar
keys. The author's mapping hash method is thus recommended
for a hash coder in the join database coprocessor and in
similar applications.

For future research, a database computer with multiple
back-ends using the SOFT would be a fruitful research topic.
The SOFT has an inherent characteristic of parallel process-
ing. As shown in step 1 and step 2 of Figure 5-3, a single
back-end processor can detect and eliminate wunnecessary
tuples in only one pair of subset files at a time. If two
or more identical back-ends with 1local memory are provided,
those subset files are processed in parallel. Thus, if the
parallel processing is developed, then the speed of the join
may be increased in proportion to the number of the back-
ends used. This multiple back-ends database computer would
outperform the multiprocessor database machines by using
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well known join methods, such as parallel nested-loops join,
parallel sort-merge join, and parallel hash-based join meth-
ods, since none of these methods exploits the filtering con-
cept in their parallel join algorithms. A comparative study
of these parallel join methods, including the HIMOD hash
join, based on the measured response time, would provide a

good solution for increasing the speed of the join.
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{****

Appendix
The New Join Algorithm

Simulation Program Listing

khkkhkhkhkhkkkkhkhkhkkhkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhhkhkhkhkhkkkkkkk

* This is the simulation program for the new hash-based
* join algorithm. The main part of this program explains
* the algorithm of the new join method.

kk%k*k

progr

****************************************************}
am Sim;

const

type

MAX_NUM_KEYS = 2048; {Total number of input keys}
NUM_IDENT_CHAR = 16; {Number of characters in a key}
MAX BUCKET_ADDR_BITS = 8; {No. of bits in a hash addr}
MAX_BOOL_DIGIT = 13; {No. bits for a prime number}
NUM_ASCII_CHAR = 70; {No. of identifiable ASCII chars}

NUM_FIRST_EXOR {No. of gates in EX-OR module}
NUM_SECOND_EXOR =

NUM_THIRD EXOR = 2;

> we
-e

BUCKET_SIZE = 255; {No. of buckets in the hash table}

OUTPUT FLAG = true; {Debug flags}

SIM DEBUG = false;

S_DEBUGED = false;

MAX_STACK_SIZE = 5; {No. of items (BASs) in the stack}
NUL = 999;

EMPTY = -1;

DISCRIMINATOR = 'B'; {Discriminator variable}

{Type for key array}
KEY_ARRAY TYPE = array (.l..NUM_IDENT_CHAR.) of char;

{Binary number type}
PRIME_BOOL_TYPE = array (.l..MAX BOOL_DIGIT.) of
boolean;
{record for alphanumeric and other punctuation}
CHAR_RECORD_TYPE = record
ch : char;
ASCII_num
prime_num

integer;
integer;
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bool prime : PRIME_BOOL_TYPE;
end;

{ASCII lookup table}

ASCII_TABLE = array (.1..NUM_IDENT_CHAR,
1..NUM_ASCII_CHAR.) of
CHAR_RECORD_TYPE;

{Bit informations for each ASCII character in a key}
BOOL_PRIME_KEY_TYPE = array (.l..NUM_IDENT_CHAR.) of
record
bool_prime :
PRIME_BOOL_TYPE;
end;
{Stack type to keep keys in bits form}
STACK_PRIME_BOOL_TYPE = array (.l..MAX STACK_SIZE.) of
record
Bool_Key_ Arr :
BOOL_PRIME_KEY_TYPE;
end;

{Types for EX-OR module}
FIRST EXOR_ARR_TYPE = array(.l..NUM_FIRST EXOR.) of

boolean;
SECOND_EXOR_ARR_TYPE = array(.l..NUM_SECOND_EXOR.) of

boolean;
THIRD_EXOR_ARR_TYPE = array(.l..NUM_THIRD_EXOR.) of

boolean;

HASHED_KEY REG_TYPE = array(.l..MAX_BUCKET_ADDR_BITS.)

of boolean;
{Type to store a hash address}
HASH_ADDR_TYPE = array (.l..MAX_BOOL_DIGIT.) of

boolean:
{Stack element type for hash address}
CODER_TYPE = record
Hashed_Addr : HASH ADDR _TYPE;

end:

{Stack type to keep hash addresses}
HASH_CODER_STACK = array (.l..MAX_STACK_SIZE.) of
CODER_TYPE;
{Record type for the name data}l
LINK = @GKEY_RECORD;
KEY_RECORD = record
Key Arr : KEY ARRAY_TYPE;
First_Name_Arr : KEY_ARRAY_TYPE;
next : LINK;
end;

{Pointer array type for bucket pointers}
BUCKET _POINTER_ARRAY = array (.0..BUCKET_SIZE.) of
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LINK;
{Type for Bit Array Store (BAS)}
BIT_ARR_TYPE = array (.0..BUCKET_SIZE.) of boolean;

{Data Structure for each BAS--BAS, next address reg,
and pointers for source and target buckets}
BIT_ARR_RECORD = record

Bit_Arr : BIT_ARR_TYPE;

Next_Bit : integer;

Source_Bucket,

Target_Bucket :

BUCKET_POINTER_ARRAY;
end;

{Stack type for the BASs}
BIT_ARR_TABLE = array (.l..MAX_STACK_SIZE.) of
BIT_ARR_RECORD;

{Next bit address}
ADDR_TYPE_ARRAY = array (.l..MAX_STACK_SIZE.) of
integer;
{Record type for ASCII information}
ASCII_RECORD = record
ASCII_Arr : ASCII_TABLE;
end:;

{ASCII stack type}
TYPE_ASCII_STACK = array (.l..MAX_STACK_SIZE.) of
ASCII_RECORD;

{Types for statistics}
REC_ELIMINATE = record
Total_Source, Total_Target,
D _Source, D _Target : integer;
end;

ELIMINATE_TYPE = array (.l..MAX_STACK_SIZE.) of
REC_ELIMINATE;

var
ASCII_Arr : ASCII_TABLE; {Table for ASCII characters}
Key _Char : char; {Variable for a character in a key}
Bool Stack : STACK_PRIME_BOOL_TYPE;
EXOR1_Arr : FIRST _EXOR_ARR_TYPE;
EXOR2_Arr : SECOND_EXOR_ARR_TYPE;
EXOR3_Arr : THIRD EXOR_ARR_TYPE;
Code_Stack : HASH_CODER_STACK; {Stack for hash coders}
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Stk_Pt : integer; {Stack pointer variable}

{Temporary pointers for target and source linked lists}
Hd_Source_Pt, Hd_Target_Pt : LINK;

stack : BIT_ARR_TABLE; {Stack for bucket pointers (BAS)
and next bit address}

finish : boolean;

Addr_Num : integer;

Hash_Value: integer;

{variables to count number of tuples in relations}
Source_Count, Target_Count, Result_Count, Hash_Count :

integer;
ASCII_Stack : TYPE_ASCII_STACK;

E_Count : ELIMINATE_TYPE;

ASCII : text; {Identifiable ASCII characters and
Internal representation for chars}

ROM_Nums : text; {Prime numbers file for ROMs}

Names : text; {2048 names data set}

out : text; {output file}

{********************************************************

* This procedure Int_To_Bool_Convert converts integer

* input number to a binary number.
********************************************************}

procedure Int_To_Bool_Convert (number:integer; var Bool_Arr:
PRIME_BOOL_TYPE) ;

var 1 : integer;
begin

for i := 1 to MAX BOOL_DIGIT do
Bool Arr(.i.) := false;

i:=1;
while (number >= 2) and (i <= MAX_BOOL_DIGIT) do
begin

if (number mod 2) =1 then
Bool Arr(.i,) := true
else
Bool Arr(.i.) := false;
number := number div 2;
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i =1+ 1;
end;

if (number = 1) and (i <= MAX_BOOL_DIGIT) then
Bool Arr(.i.) := true;

end;

{*********************************************************

* Procedure Initialization initialize mainly by reading

* inputs and storing them on the declared data structures
*********************************************************}

procedure Initialization;

const
char_divisor = 20;
number_divisor = 10;

var i, j, k, n : integer;
number : integer;
character : char;

begin

{Reset input files.}
reset (ASCII);

reset (ROM_Nums);
reset (Names);
rewrite (out);

for i := 1 to MAX_STACK_SIZE do
begin
with E_Count(.i.) do
begin
D_Source := 0
D_Target := 0
Total_Source
Total_Target
end;

s 00 we wo
[ |

weo we

end;
{Assign null values for the ASCII table}

for n := 1 to MAX STACK_SIZE do
begin

with ASCII_Stack(.n.) do
begin
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for i := 1 to NUM_IDENT_ CHAR do
begin

for j := 1 to NUM_ASCII_CHAR do
begin

with ASCII_Arr(.i,j.) do
begin
ch = '?2';
prime_num := NUL;
ASCII_num := NUL;

for k := 1 to MAX BOOL_DIGIT do
bool prime(.k.) := false;
end;
end;

end;

end;
end;

{Then read inputs and store them in the ASCII table}

for j := 1 to NUM_ASCII_CHAR do
begin
read(ASCII, character);

for i := 1 to NUM_IDENT CHAR do
begin
for k := 1 to MAX STACK_SIZE do
begin
with ASCII_Stack(.k.) do

ASCII_Arr(.i,j.).ch := character;
end;
end;

if j mod char_divisor = 0 then
readln(ASCII);
end;

readln(ASCII);

{If the input number is too large for the table item,
subtract 64 from the number before storing in table}

for j :=1 to NUM_ASCII_CHAR do
begin
read(ASCII, number);
if number > 64 then number := number - 64;
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for i := 1 to NUM_IDENT_CHAR do
begin

for k := 1 to MAX STACK_SIZE do
begln
with ASCII_Stack(.k.) do

ASCII_Arr(.i,j.).ASCII_num := number;
end;

end;

if j mod number_divisor = 0 then
readln(ASCII);

end;

{Read prime numbers and store them into ROM in binary form}
for i := 1 to NUM_IDENT_CHAR do
begln

for j := 1 to NUM_ASCII_CHAR do
beg:n

with ASCII_Stack(.l.).ASCII Arr(.i, j.) do
begin

read(ROM_Nums, prime_num);

if j mod number divisor = 0 then
readln(ROM_Nums) ;

Int_To_Bool_Convert(prime_num,
bool prime);

end; {with}
end; {for}

readln(ROM_Nums);
end; {for}

for n := 2 to MAX STACK_SIZE do
begin

with ASCII_STACK(.n.) do
begin
for j := 1 to NUM_ASCII_CHAR do
begin
with ASCII_Arr(.1l,j.) do
begin
read (ROM_Nums, prime_num);
if j mod number divisor = 0 then
readln (ROM_Nums);

Int_To_Bool Convert(pr1me num,
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bool _prime);
end;
end;
readln(ROM_Nums);

for 1 := 1 to NUM_IDENT_CHAR do

begln
for j := 1 to NUM_ASCII_CHAR do
begin
ASCII Arr(.i,j.). prime_num ;=
ASCII_Arr(.1l,j.).prime_num;
for k := 1 to MAX_BOOL DIGIT do
ASCII_Arr(.i,j.).bool_prime(.k.)
:= ASCII_Arr(.1,j.).bool _prime(.k.);
end'
end;
end; {with}
end; {for}
Stk Pt := 1;
finish := false;

Addr_Num := NUL;
{Assign null to all the bucket pointers in the stack}
for i := 1 to MAX_STACK_SIZE do

begln
with stack(.i.) do
begin
for j := 0 to BUCKET_SIZE do
begin

Bit_Arr(.j.) := false;
Source Bucket( je) = nil;
Target_Bucket(.j.) := nil;
end;
Next_Bit := NUL;
end; {with}
end; {for}

Hd_Source_Pt := ni
Hd_Target_ Pt := ni

Hash_Count :=

Source_Count :

Target_Count :

Result_Count :
end;
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{*********************************************************

* Procedure Form_Source_And_Target_Relations includes
* several subroutines and reads input names to create
* source and target relations comparing initial of each

* last name with a discriminator variable.
*********************************************************}

procedure Form_Source_And_Target_Relations;

var

Key Pt : LINK;

Char_No_First, Char_No : integer;

Source_Target_Flag, “Target_Flag, Last_Name_Flag :
boolean;

Key No : integer;

{For Debugging Purpose}
kl, k2 : integer;
ptl, pt2 : LINK;

{*********************************************************

* Procedure Init_While_Do_Loop does initialization

* gteps for next while do loop.
*********************************************************}

procedure Init_While_Do_Loop;

var

i: integer;

begin

end;

Char_No := 1;
new(Key_ Pt);

for i := 1 to NUM_IDENT CHAR do
begin
Key_Pt@.Key Arr(.i.) := '
Key Pt@.First_Name Arr( i. ) = '
end;

Source_Target_Flag := false;
Target_Flag := false;
Last_Name Flag := true;

Char No First := 1;
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{*********************************************************

* Function More_Chars_Left For_Key checks if there is

* more input chars and sends boolean value back.
*********************************************************}

function More_Chars_Left_For_Key : boolean;
begin

if (((Char_No > NUM_IDENT_CHAR) or
(Char No First > NUM IDENT CHAR))
or eoln(Names)) or eof (Names) then
begin
More_Chars_Left_For_Key := false;
readln(Names);
end
else
More_Chars_Left_For_Key := true;
end;

{********************************************************

* Procedure Read A_Char reads a name and stores it

* based on the flag and character position variables.
********************************************************}

procedure Read_A Char;
begin
read(Names, Key Char);

if Last_Name_Flag then
begin
Key Pt@.Key_ Arr(.Char_No.) := Key_Char;
Char_No := Char_No + 1;
end
else
begin
Key_ Pt@.First_Name_Arr(.Char_No_First.)
¢= Key_Char;
Char_No_First := Char_No_First + 1;
end;

if (Key _Char = ' ') and (not Source_Target_Flag) then
begin
read(Names, Key Char);
if ord(Key_Char) > ord (DISCRIMINATOR) then
begin
Target_Flag := true;
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end;
Key Pt@.First_Name_ Arr(.Char_No_First.)
¢= Key_Char;
Char_No_First := Char_No_First + 1;
Source_Target_Flag := “true;
Last_Name_Flag := false-
end;
end;

{********************************************************
* Procedure Attach_Key_To_Source_Or_Target_Relations

* attaches the key record to either the target list

* or the source list based on the flag.
********************************************************}

procedure Attach_Key_ To_Source_Or_Target_Relations;

begin
if Target_Flag then
begin
Key_Pt@.next := Hd_Target_Pt;
Hd_Target_Pt := Key_Pt;
Target_Count := Target_Count + 1;
end
else
begin
Key_Pt@.next := Hd_Source_Pt;
Hd_Source_Pt := Key_Pt;
Source_Count := Source_Count + 1;
end;
end;
{===m--- Form_Source_And_Target_Relations ----=-====== }
begin
for Key_No := 1 to MAX_NUM KEYS do
begin
Init_While_Do_Loop;
While More Chars _Left_For_Key do
begin
Read_A_Char;
end;
Attach_Key_ To_Source_Or_Target_Relation;
end;

if SIM _DEBUG then
begin
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wr1teln(out)
write(out, If the first character of a first name is' ):
write(out,‘ between "A" ');
writeln(out,'and "', DISCRIMINATOR,'",');
write(out,' the name will be included');
writeln(out,' in the source relation.');
write(out,' Otherwise, the name will be included');
writeln(out,' in the target relation.');
writeln(out);
writeln(out);
write(out,' -----—------—- SOURCE-==-=-=-=—m————mmmmme—mm—— ');:
writeln(out,'----- TARGET------—=-~—--—--- ');:
writeln(out);
ptl := HA_ Source Pt;
pt2 := Hd_Target_ “Pt;
kl := 1;
while ((ptl <> nil) or (pt2 <> nil)) and
(k1 <= MAX _NUM__ KEYS) do
begin
write(out,' ');
if ptl <> nil then
begin
for k2 := 1 to NUM_IDENT_CHAR do
wr1te(out ptl@.Key_Arr(.k2.));
for k2 := 1 to NUM_IDENT CHAR do
wrlte(out,ptl@.First_Name_Arr(.k2.));
if ptl@.next <> nil then
ptl := ptl@.next
else
ptl := nil;
end
else
begin
for k2 := 1 to NUM IDENT_ CHAR*2 do
write(out,' ');
end;

write(out,"' ");
if pt2 <> nil then
begin
for k2 := 1 to NUM_IDENT_CHAR do
write(out,pt2@.Key Arr(.k2.));
for k2 := 1 to NUM_IDENT_CHAR do
wr1te(out pt2@.First_Name_ Arr(.k2.));
if pt2@.next <> nil then
pt2 := pt2@.next
else
pt2 := nil;
end;

writeln(out);
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kl := K1 + 1;

end;
end;
end;

{*********************************************************

* Procedure Hash_Source_And_Target_Relations calls

* Hash Relation procedure to hash tuples in the relation.
* *******************************************************}

procedure Hash_Source_And_Target_Relations;

var
point : LINK;
address : integer;
Key Char : char;
index : integer;
i, j ¢ integer;
Source_Flag : boolean;
Addr_Array : Addr_Type_Array;
ok : boolean;
ptl : LINK;

{********************************************************

* Procedure Hash_Relation hashes source relation first,
* marking corresponding bit array store. Then it hashes
* tuples in the target relation examining if each tuple
* is necessary or not. It the tuple is unnecessary,

* it is discarded immediately. The filtering process is
* also applied to the source tuples by calling

*

*

procedure Eliminate_Needless_Source_Tuples.
*******************************************************}

procedure Hash_Relation (pt : LINK; Source_Relation :
boolean);

var
Char_No, Bit_No : integer;
Key Pt : LINK;
Next Pt : LINK;
i : Integer;
Coder_No : integer;
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{*********************************************************

* Procedure Look_Up_Char_In _Prime_Num_Table finds out
* index number to the prime table which contains the

* character identical to the input character.
*********************************************************}

procedure Look_Up_Char_In_Prime_Num_Table(var idx:integer);

var found : boolean;
j ¢ integer;

begin
j o= 1;
found := false;
repeat
if ASCII_Stack(.Stk_Pt.).ASCII_Arr(.Char_No,j.).ch
= Key_Char then

begin
found := true;
idx := j;

end

else

begin
o= 3+ 1;

end;

until found or (j > NUM_ASCII_CHAR);

if (j > NUM_ASCII_CHAR) and (not found) then
idx := 64;

end;

{********************************************************

* Procedure Save Blnary Prime Num looks up the
* correspondlng pr1me number In the ROM table, and
* copies the number in binary form to the key array

* (or key register).
********************************************************}

procedure Save Binary Prime_Num(idx: integer);

var i, j : integer;

begin
for i := Stk_Pt to MAX_ STACK_SIZE do
begin
with Bool Stack(.i.).Bool_Key_Arr(.Char_No.) do
begin
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for j := 1 to MAX_BOOL_DIGIT do
begin
with ASCII Stack(.i.) do
bool prime(.j.) :=
ASCII_Arr(.Char_No,idx.).bool_prime(.j.);
end;

end; {with}
end;

end;

{*******************************************************

* Boolean function EX_OR receives two boolean input
* variables and exclusive-ORs the two inputs to send

* the resulting boolean output to the calling program.
*******************************************************}

function EX OR (Bit_X, Bit_Y: boolean): boolean;
begin
if Bit_X and Bit_Y then EX_OR := false
else if Bit_X and (not Bit_Y) then EX_OR := true
else if (not Bit_X) and Bit_Y then EX_OR := true

else if (not Bit_X) and (not Bit_Y) then EX_OR

end:;

{********************************************************

* Procedure First_Level LEX _Oring receives a hash coder
* number as an integer Input to select a right element
* in the stack. Then this procedure exclusive-ORs the

* two input bits or prime numbers and stores the result
* into proper spot in the temporary array. Therefore,
* this procedure simulates the first (or highest)
* level of the downward complete binary tree of
*
*

exclusive-OR module.
*******************************************************}

procedure First_Level Ex_Oring(Code_No : integer);
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var i, j : integer;

begin
i:=1;
joi=1;
repeat

with Bool_Stack(.Code_No.) do
EXOR1_Arr(.j.) :=
EX_OR(Bool_Key_ Arr(.i.).bool prime(.Bit_No.)
,Bool_Key Arr(,i+l.).bool_prime(.Bit_No.));

i 2
' 1

= 1+ 23
CJ o= 3+ 1
until (j > NUM_FIRST_EXOR);

end;

{********************************************************
* Procedure Second_Level Ex-Oring exclusive-ORs again

* the resulting bits calculated by the procedure

* First_Level_Ex_Oring, and stores the results into

* temporary array for next exclusive-OR operation.
********************************************************}

procedure Second_Level Ex_Oring;

var i, j : integer;

begin
i = 1;
jos=1;
repeat

EXOR2_Arr(.j.) := EX_OR(EXOR1_Arr(.i.),
EXOR1_Arr(.i+l.));
i+ 2;
J i+ 1;
until (j > NUM_SECOND_EXOR);

i

end;

{*********************************************************

* Procedure Th1rd Level Ex Oring exclusive-ORs again
* the resulting bits calculated by the procedure
* Second_Level Ex_Oring, and stores the results into a
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* temporary array for next level Exclusive_OR operation.
*********************************************************}

procedure Third_Level_Ex_Oring;
var i, j : integer;

begin
i:=1;
j o= 1;
repeat

EXOR3_Arr(.j.) := EX_OR(EXOR2_Arr(.i.),
EXOR2_Arr(.i+1.));

i 2

j 1

=1 + 23
CJ o= 3+ 15
until (j > NUM_THIRD_EXOR);

end;

{******************************************************

* Procedure Last_Ex_Oring_And_Store_An_Addr_Bit
* exclusive ORs the two input bits produced by the
* procedure Third Level Ex_Oring, and produces a

* final resulting bit of a hash address.
******************************************************}

procedure Last_Ex_Oring_And_Store_An_Addr_Bit
(Code_No : integer);

begin
with Code_Stack(.Code_No.) do
Hashed Addr(.Bit_No.) := EX_OR(EXOR3_Arr(.1l
EXOR3_Arr(.2

L] L]
N Saaas?
S~

end;

{******************************************************

* Procedure Bool To_Int_Convert converts a hash

* address produced in each participating hash coder

* to an integer number and stores the number into

* an array of hash addresses. It repeats this process

* for every participating hash coder.
******************************************************}

procedure Bool To_Int_Convert
(var addrs : Addr_Type_Array);
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var sum : integer;
i, j : integer;
offset : integer;

begin
for i := 1 to MAX_STACK_SIZE do
begin
addrs(.i.) := NUL;
end;

for i := Stk_Pt to MAX_STACK_SIZE do
begin

sum :=

for j :

'MAX_BUCKET ADDR_BITS+Stk_Pt
downto 1+Stk_Pt do

it O

begin
with Code_Stack(.i.) do
begin
if Hashed_Addr(.j.) then
sum := 2 * sum + 1
else
sum = 2 * sum;
end;
end;
addrs(.i.) := sum;
end;
end;

begin
while pt <> nil do
begin
for Char_No := 1 to NUM_IDENT_CHAR do
begin
Key_Char := pt@.Key_ Arr(.Char_No.);

{Read character by character
for a key looking up the corresponding prime

number and convert it to binary number}
Look_Up_Char_In_Prime_Num_Table(index);
Save_Binary_Prime_Num(index);

end;
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for Coder_No := Stk_Pt to MAX_STACK_SIZE do
begin

{Get the first digit of the binary prime numbers
which converted from a character, and

do the Exclusive-Or operation to get the first
bit for the hashed address. Repeat this

process up to the last digit.}

for Bit_No :=1 to MAX BOOL_DIGIT do

beg1n
First_Level Ex_Oring(Coder_No);
Second_ Level Ex_Oring;
Third_ Level Ex_Oring;
Last Ex Or1ng And Store_An_Addr_Bit
{Coder_No);
end;
end;

Bool_To_Int_Convert(Addr_Array);
Hash_Count := Hash_Count + 1;

if SIM_DEBUG then
begin
write(out,’ ')
for i:= 1 to NUM IDENT CHAR do
write(out,pt@.Key Arr(.i.));

for i 2= 1 to MAX_STACK_SIZE do
wr1te(out Addr_Array(.i.):7);
writeln(out);
end:

with E_Count(.Stk_Pt.) do
begin
Key_Pt := pt;
Next Pt := pt@.next;
if Source_Relation then
begin
{Total Source := Total_Source + 1 }
with stack(.Stk_Pt.) do
begin
Key_Pt@.next := Source_Bucket
(.Addr_Array(.Stk_Pt.).);
Source_Bucket(.Addr_Array(.Stk_Pt.).)
:= Key_Pt;
end;
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for i := Stk_Pt to MAX STACK_SIZE do
stack(.i.).Bit_Arr(.Addr_Array(.i.).)
¢t= true;
end
else
begin
ok := true;
i = Stk_Pt;
Total_Target := Total_Target + 1;
while ok and (i <= MAX_STACK_SIZE) do

begin
with stack(.i.) do
begin
if not Bit_Arr(.Addr_Array(.i.).)
then
ok := false;
end;
i =1+ 1;
end;
if ok then
begin

with stack(.Stk_Pt.) do begin
Key_Pt@.next :=
Target_Bucket(.Addr_Array(.Stk_Pt.).);
Target Bucket(.Addr_Array(.Stk_Pt.).)

:= Key_Pt;

end:;

end

else

begin
D _Target := D_Target + 1;

end;

end;

pt := Next_Pt;
end; {with}
end; {while}
end;

{*******************************************************

* Procedure Eliminate_Needless_Source_Tuples
* eliminates unnecessary source tuples examining the
* buckets and sets the corresponding bit in the bit

* array store to false(0).
*******************************************************}

procedure Eliminate_Needless_Source_Tuples;
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var
i : integer;
pt : LINK;
S_Count : integer;
begin
for i := 0 to BUCKET_SIZE do
begin
with stack(.Stk_Pt.) do
begin
S_Count := 0;
pt := Source_Bucket(.i.);
while pt <> nil do

begin
with E_Count(.Stk_Pt.) do
begin
Total_Source := Total_Source + 1;
S_Count := S_Count + 1;
end;
pt := pt@.next;
end;
if Target_Bucket(.i.) = nil then
begin
with E_Count(.Stk_Pt.) do
begin
D_Source := D_Source + S_Count;
end;

Source_Bucket(.i.) := nil;
Bit_Arr(.i.) := false;
end; {1f}
end; {with}
end; {for}
end; {Eliminate_Needless_Source_Tuples}

{--- Hash_Source_And_Target_Relations start from here ---}

begin  {Hash_Source_And_Target_Relations}
Source_Flag := true;
point := Hd_Source_Pt;
Hash_Relation (point, Source_Flag);

if SIM DEBUG then

begin
for j := Stk_Pt to MAX_STACK_SIZE do
begin
writeln(out);
write(out,' ------------ ");



writeln(out,' BIT_ARRAY at Stack Level : ',6j:1);

Write(out,' ———————————— ')
for i := 0 to BUCKET_SIZE do
begin

if stack(.j.).Bit_Arr(.i.) then
wr1te(out,'1 )

else
write(out,'0');

if (i mod 50) = 49 then
begin;
writeln(out);
end;
if (i mod 10) 9 then
write(out,' ');

end;
writeln(out);
end;
writeln(out);

end;

Source_Flag := false;
point := HAd_Target_Pt;
Hash_Relation (point, Source_Flag);

Eliminate_Needless_Source_Tuples;

if SIM_DEBUG then

begin™

writeln(out);

write(out,' Hash Source_And Target called ');

writeln(out,'at Stack Level : ',Stk_Pt :1);
with stack(.Stk_Pt.) do
begin
for i := 0 to BUCKET_SIZE do
begin

ptl := Source_Bucket(.i.);
if ptl <> nil then
begin
writeln(out);
write(out,' --- Source Bucket No. ');

writeln(out,is:l,' ---');
end;
while ptl <> nil do
begin
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write(out,' ');
for j := l to NUM IDENT CHAR do
write(out,ptl@.Key Arr(.j.));

for j 3= 1 to NUM_IDENT_CHAR do
wr1te(out,pt1@ First Name Arr(.j.));

writeln(out);
ptl := ptle@. next;
end;

ptl := Target_Bucket(.i.);
if ptl <> nil then
begin
writeln(out);
write(out,' --- Target Bucket No. ');
writeln(out,i:3,' ---');
end;
while ptl <> nil do
begin
write(out,' ');
for j := 1 to NUM_IDENT_CHAR do
wr1te(out,pt1@ Key Arr(.j.));

for j := 1 to NUM_IDENT _CHAR do
write(out,ptl@.First Name_ Arr(.j.));
writeln(out);
ptl := ptl@.next;
end;
end; {for}
end; {with}
end;
end;

{********************************************************

* Procedure Clear_Current_Upper_ Part_Of_Stack clears
* current and upper part of bit array stores and

* assigns null value to all buckets.
********************************************************}

procedure Clear_Current_Upper_Part_Of_Stack;

var

i, j ¢ integer;
begin

for i := Stk_Pt to MAX_STACK_SIZE do

begin
with stack(.i.) do
begin
for j := 0 to BUCKET_SIZE do
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begin

Bit_Arr(.j.) := false;
Source_Bucket(.j.) := nil;
Target_Bucket(.j.) := nil;
end;
Next_Bit := NUL;
end;
end;

end;

{*********************************************************

* Function Only_One_Bit_Set_After_Hash simulates hash

* address comparators to provide a condition code for

* checking if only one kind of hash address has been

* produced by examining all the bits in the participating
* bit array store(s). If only one bit is set in each

* participating BASs, the condition code gets true

*

*

value; otherwise, it gets false value.
********************************************************}

function Only One_Bit_Set_After_ Hash(var addr: integer) :
boolean;

var
flag
dong

i, 3

boolean;
boolean;
integer;

e o0 oo

begin
i := Stk_Pt;
addr := NUL;
done := false;
while (not done) and (i <= MAX STACK_SIZE) do
begin
flag := false;
with stack(.i.) do
begin
j = 0;
wvhile (not done) and (j <= BUCKET_SIZE) do
begin
if Bit_Arr(.j.) and (not flag) then
begin
flag := true;
if i = Stk_Pt then
begin
addr := j;



else
if Bit_Arr(.j.) and flag then

begin
done := true;
if i = Stk_Pt then
Next_Bit := j;
end;
joi=3+1;
end;
end;
i:=1+1;
end;
if done then
begin
Only_One_Bit_Set_After_Hash := false;
end
else
begin

Only One_Bit_Set_After_Hash := true;
if addr = NUL then
addr := EMPTY;
end;
end;

{*********************************************************

* Procedure Merge_Relations_And_Print_Out simulates the
* merge process of join executed by the host processor

* without having key comparisons for the final screening
* gsince nearly all unnecessary data have already been
*
*

filtered.
********************************************************}

procedure Merge_Relations_And_Print_Out (addr: integer);

var
Pt_Source, Pt_Target, Pt_T : LINK;
i : integer;

begin
if addr <> EMPTY then
begin
if SIM DEBUG then
begin

write(out,' Merge Relations At Stack Level ');
write(out,Stk_Pt : 1);
wrlteln(out, “with Bucket Number ',addr : 3);

end;
if OUTPUT_FLAG then writeln(out);
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with stack(.Stk_Pt.) do

begin
Pt_Source := Source_Bucket(.addr.);
Pt _Target := Target Bucket(.addr.);
end;
while Pt_Source <> nil do
begin

Pt LT = Pt_Target;
while Pt_T <> nil do
begin
If OUTPUT_FLAG then
begin

write(out,' ');
for i := 1 to NUM_IDENT CHAR do
write(out,Pt_Source@.Key Arr(.i.));

for i := 1 to NUM_IDENT CHAR do
write(out,
Pt_Source@.First_Name_Arr(.i.));

for i := 1 to NUM_IDENT_CHAR do
write(out,Pt_T@.Key_ Arr(.i.));

for i := 1 to NUM_IDENT_CHAR do
wr1te(out Pt_T@.First Name Arr(.i.));
end;
Pt_T := Pt_T@.next;
Result Count := Result Count + 1;
if OUTPUT FLAG then wrlteln(out)'
end;
if OUTPUT_FLAG then
begin
writeln(out);
writeln(out);

end;
Pt_Source := Pt_Source@.next;
end;
end
else
begin

if SIM DEBUG then
writeln(out,' There are no keys to be merged.');
end:;
end:

{*******************************************************

* Procedure Save_Next Bucket_Addr simulates next bit
* address reglster in"each hash address comparator.
* Initial value in this register is gained by checking
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* each individual bits in the current bit array store.
*******************************************************}

procedure Save_Next_Bucket_Addr;

var
i : integer;
found : boolean;
num : integer;

begin
num := NUL;
found := false;
i $= Addr_Num + 1;
while not found and (i <= BUCKET_SIZE) do

begin
if stack(.Stk_Pt.).Bit_Arr(.i.) then
begin
stack(.Stk_Pt.).Next_Bit := i;
found := true;
end;
i =1+ 1;
end;

if (not found) and (i > BUCKET_SIZE) then
stack(.Stk_Pt.).Next_Bit := NUL;
end;

{********************************************************
* Boolean function No More Next Bucket Addr checks whether

* the next bit address register has null value or not

* If so, it sends the true value.
********************************************************}

function No_More_Next_ Bucket_Addr: boolean;

begin
if stack(.Stk_Pt.).Next_Bit = NUL then
begin
Addr_Num := NUL;
No_More_Next_ Bucket_Addr := true;
end
else
begin
No_More_Next_Bucket_Addr := false;
Addr_Num := stack(.Stk_Pt.).Next_Bit;
end;
end;
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{*******************************************************

* Procedure Assign_Source_And_Target assigns the
* header pointers of both source and target lists to
* the temporary header variables based on the saved

* next bit address in the next bit address register.
*******************************************************}

procedure Assign_Source_And_Target;

begin
if SIM_DEBUG then
begin
writeln(out);
write(out,’ A551gn Source_And_T ==>');
write(out,' Address Number : ')
write(out, Addr _Num : 3);
wr1teln(out ~Stack Number : ',Stk_Pt :1);
end;
Hd_Source_Pt :=
stack( Stk_Pt.).Source_Bucket(.Addr_Num.);
Hd_Target_Pt :=
stack (. Stk_Pt.).Target_Bucket(.Addr_Num.);
end;

{*********************************************************

* pProcedure pop deletes one bit array store from the

* top of the stack by lowering the stack pointer by one.
*********************************************************}

procedure pop;

begin
Stk _Pt := Stk_Pt - 1;
if Stk Pt < 1 then
writeln(out,' Stack Underflow !');

if SIM DEBUG then
begin
writeln(out);
write(out,' Popped, Stack Pointer is ',Stk_Pt:l);
writeln(out,' from ',Stk_Pt+1l:1);
end:;
end:
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{********************************************************

* Procedure push moves up the stack pointer so that
* a bit array store is inserted onto the top of the

* stack.
********************************************************}

procedure push;

begin
Stk Pt := Stk _Pt + 1;
if Stk Pt > MAX STACK_SIZE then
writeln(out,' Stack Overflow !');

if SIM_DEBUG then
begin
writeln(out);
write(out,' Pushed, Stack Pointer is ',Stk_Pt:1);
writeln(out,' from ',Stk_Pt-1:1);
end;
end;

{*******************************************************

* Function Bottom Of Stack tells if the stack pointer

* is pointing to the bottom element of the stack.
********************************************************}

function Bottom_Of Stack : boolean;

begin
if Stk_Pt = 1 then
Bottom_Of_ Stack := true
else
Bottom_Of_Stack := false;

end:;

{********************************************************

* Procedure Print Statistics prints out the statistical

* results of the simulation of the new join operation.
********************************************************}

procedure Print_Statistics;

var
i : integer;

begin
writeln(out);
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writeln(out);

writeln(out);

write(out,' If the first character of a first name is ')
writeln(out, 'between "A"™ and "', DISCRIMINATOR,'",'):
writeln(out,' the name will be included');
writeln(out,' in the source relation.');

write(out,' Otherwise, the name will be included'):;
writeln(out,' in the target relation.’');

writeln(out);

writeln(out);

writeln(out);

write(out,' STACK LEVEL TOTAL TUPLES DISCARDED ');
writeln(out, 'TUPLES FILTERED RATIO OVERALL RATIO ')
write(out, '
writeln(out,' ")
writeln(out);

Ea T

.
’

for i := MAX STACK SIZE downto 1 do begin
with E_Count(.i.) do begin

write(out,' ',i:3,’' ,Total_Source:4);
write(out,’ ,D_ Source 4);
write("' ').

if Total_Target <> 0 then
begin
write(out, (D _Source/Total_Source)*100:7:2);
write(out,'% ");
end
else
write(out,' NONE ');

if Target_Count <> 0 then
write(out, (D _Source/Source_Count)*100:7:2,'%"');

wrlteln(out <==—=——- SOURCE RELATION ')
write(out,' ,Total_Target:4);
write(out,' ,D Target 4);
write(out,' "):

if Total Target <> 0 then begin
write(out, (D_Target/Total Target)*100:7:2);
wr1te(out,'% ');
end
else
write(out,' NONE ");

if Target_Count <> 0 then

.
1

write(out, (D_Target/Target_Count)*100:7:2,'%');

wrlteln(out, K=m=mm——- TARGET RELATION ')
writeln(out);



end;
end;
writeln(out);
writeln(out);
writeln(out);
writeln(out);
write(out,' THE TOTAL NUMBER OF KEYS'):;
write(out, IN THE SOURCE RELATION : ');
wr1te1n(out Source_Count:4);
wrlteln(out)
write(out, THE TOTAL NUMBER OF KEYS ');
wr1te(out,‘IN THE TARGET RELATION : '):
writeln(out,Target_Count:4);
wrlteln(out)
write(out,' THE TOTAL NUMBER OF KEYS');
write(out,' IN THE RESULT RELATION : ');
writeln(out,Result_Count:4);
wrlteln(out)
wr1te1n(out)'
writeln(out);
write(out,' THE TOTAL NUMBER OF HASH CODER USED ');
write(out,'USED IN THE JOIN : ');
wr1te1n(out Hash_Count:4);
wr:teln(out),
end;

{kkkkkkkkkkk* MAIN PROGRAM STARTS HERE **kkkkkkkkkkkkhkk]
begin

Initialization;

Form_Source_And_Target_Relations;

repeat
Clear_Current_Upper_Part_Of_Stack;

Hash_Source_And_Target_Relations;

if Only_One_Bit_Set_After_ Hash(Hash_Value) then
begin

Merge Relations_And_Print_Out(Hash_Value);

if No_More_Next Bucket_Addr then

begin~
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if Bottom_Of_Stack then
finish := true
else
begin
pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_ Stack then
finish := true

else
begin
pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then
finish := true
else
begin
pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then
finish := true
else
begin
pop;
if No_More_Next_Bucket_Addr
then begin~
if Bottom_Of_ Stack then
finish := true
else
begin
Assign_Source_And_Target;
Save_Next _Bucket Addr-
push;
end;
end:
end:;
end
else
begin
Assign_Source_And_Target;
Save_Next Bucket Addr'
push;
end;
end;
end
else
begin

Assign_Source_And_Target;
Save_Next Bucket_ Addr;
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push;
end;
end;
end
else
begin
Assign_Source_And_Target;
Save_Next Bucket Addr-

push;
end;
end;
end
else
begin

Assign_Source_And_Target;
Save_Next_Bucket _Addr;
push;
end;
end
else
begin
Assign_Source_And_Target;
Save_Next _Bucket_Addr;
pushj
end
until finish;

Print_Statistics;

end.
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