A Collection of Research Processes for
Genealogy and Proofs

VOLUME FOUR, SECTION 23

Technical Report, "Four Hash Algorithms and Analysis."
Written Since June 28, 1989

by

Dr. Dong-Keun Shin

On June 13, 1996

Submitted to the Chair of
Department of Electrical Engineering and Computer Sciences
College of Engineering
University of California, Berkeley
Berkeley, CA 94720



FOUR HASH ALGORITHMS AND ANALYSIS

< ABSTRACT >

In this paper, four different hash algorithms will be
described, and they will be discussed based on the criteria
given by Donald Knuth. Especially, this report focuses on the
algorithm which will fit well 1into database hardware filter
which millions of data might be passed through. Any selected
hash algorithm for the database hardware filter should
distribute keys into buckéts as uniformly as possible. And it
is also emphasized that the algorithm should compute hash
address very fast using any necessary hardware components. One
of the main suggestions is to avoid time-consuming serial
and/or iterative computation to generate each hash address. It
is ideal to have a data independent hash function which
calculates a hash address within single machine cycle with
reasonably good distributions. Character to Prime Numbers
Mapping hashing function with an aid of hardware components
produces every hash address within single machine cycle, And
the statistical analysis shows that the minimizing collision
occurrences of the algorithm is better than that of the famous

division method which is data dependent hash algorithm.



< INTRODUCTION >

According to what Knuth requires for good hash function
in his book (The Art of Computer Programming, Vol. 3 "Sorting
and Searching™, Page 512), it must satisfy two requirements
such as the followings:

1) Its computation should be very fast.

2) It should minimize collisions.

He added that even though many hash methods have been
suggested, none of them proved to be superior to the simple
division and multiplication methods. However, regarding the
time consumed to add up the characters in a key and divide
and/or multiply the sum, the required cycle time might be
considerably large. Although this 1issue 1is quite machine
dependent, this argument becomes extremely important when
series of millions and millions data are waiting to be hashed

out in a database computer.

The proposed hash algorithm might be called as
"Characters to Prime Numbers Mapping Hash Function." This
algorithm requires hardware aids such as Random Access Memorys
and a bunch of exclusive-or gates to calculate a hash address
with single machine cycle. So it might be more than 100 times
faster than the division method. Moreover, since this
algorithm is not data dependent at all, it has less chance of
collision occurrences when keys are similar. For example, by
the division method algorithm, the keys like 'XY' and and '¥X'
will be 1inserted into the same bucket. And the keys 1like

_2_



'generatorl', 'generator2', and 'generator3' probably will be
put into the buckets next to each other. When the key
attributes are somehow similar in any form, the data dependent
hash function including the division method perform poorly

showing some sorts of data clusterings.

In this report, the algorithms of four hash functions
will be described and their main programs used in the modules
for the performance analysis will be depicted in each section.
The result of statistical analysis of those hash functions
using three different data sets will will be followed. 1In the
first section, the well-known division method will be shown.
And in the second section, "Character Based Hash Function"
which is very similar to Digit Analysis Hash Method will be
described. Professor Maurer has recommended one hash function
which is basically shift and exclusive or hashing scheme. This
data independent hash function will be shown 1in the third
section. In the fourth section, the proposed "Characters to
Prime Numbers Mapping Hash Function" (or just called "Mapping

Hash Function") will be illustrated.



1. Division Method Hash Function

This hash algorithm simply adds up the ordinal number of
ASCII characters in a key, then it gets the remainder after
dividing the sum (K) by bucket size number (M). So the
resulting remainder (h(k)) could represent any bucket number

from 0 through M-1,
h(K) = K mod M

It is said that 1if a prime number is chosen for M, it might
provide better distributions. But this is not necessarily a
true statement. As it was mentioned in the introduction, this
hash function is quite data dependent function. The
performance is largely dependent on the loading factor (the
ratio of the number of records to the bucket size). If the
bucket size gets substantially large, this function might show
more data clustering when the keys are similar in any forms.
When this function was tested with 16 ASCII characters random
numbers, the distribution was very poor since the sum of the
16 ASCII characters might be within some number range. When
Lum, Yuen, and Dodd tested this function in 1971, they only
used 1, 2, 5, 10, 20, and 50 bucket sizes. This experiment
was not sufficient to support their and Knuth's conclusion.
The main program of the division method testing module will be

shown in the next page.



MAIN PROGRAM OF THE DIVISION METHOD HASHING SCHEME IN PASCAL

{:k*fc:’r:'::‘c:‘n'n‘::’c:‘c:’:)’::‘::‘::’: MAIN PROGRAM STARTS HERE stfeftfesedfoddfdotfokihk

e

b

k.
et

begin
Initialization;
{Read Keys one by one converting them to hashed addresses}
for Key No := 1 to MAX_NUM_KEYS do
begin
Init_While_Do_Loop;

{Read character by character for a key looking up the
corresponding ASCI| value}

while More_Chars_Left_For_Key do
begin
Read A Char;
Add_It_To_Sum (sum) ;

Increment_Char_Pointer;
end;

{Using the resulting hashed -ddress, store the input key in
the corresponding bucket.}
Store_Key_In_Addressed_Bucket (sum) ;
end; {outer for}
{Print out all the keys in every hashed buckets.}
Print_Keys_In_Each_Bucket;
{Print out all the necessary statistics for an analysis.}
Print_Statistics;

end.



2. Character Based Hash Function

This algorithm uses the first two characters of each key
to generate hash address for the key. The first character
determines which group of buckets the key will be inserted
into. Each group has 10 buckets. There are 26 alphabets in
English and there are 256 buckets. Assumingly each key for
this function must have alphabets in it's first two character.
So bucket number 0 through 9 will contain keys which have 'a'
or 'A' in their first character. The bucket number 10 through
19 are for keys which have 'b' or 'B' in their first character
and so on. Accordingly, the bucket number 250 through 255 for
keys which have 'z' or 'Z' in their first character. Depends
on the second character of the key, the exact bucket number
that the key belongs to will be determined. The least

significant digit in the bucket number is as followings.

BUCKET NO. THE SECOND CHARACTER

_ _ 0 VAT SRS LA AR A el

AL 'd'/'D', 'e'/'E'

__ 2 '£'/'F', 'qg'/'G', 'h'/'H'

__ 83 R AVAS SRS AVAR A

4 "'k'/'R', '1'/'L', 'm"/'M'

_ B¢ 'n'/'N', 'o'/'O"

__6: 'p'/'P', 'q'/'Q", 'r'/'R!

_ _ 7 s 's'/'S', 't /T

I B 'u‘/‘U", ANAR AN AVAL" A
9 LR AR50 - Osptl RS0 - B 706

_6_



Then it will check if the resulted bucket number resides
between 0 through 255, since ther 1is a chance to have
addresses like 256, 257, 258, and 259. In this case, it
divides the number by maximum bucket size (256) to get the
remainder. And this remainder becomes the final bucket
address. The main program of the character based hash testing

module will be shown in the next page.

The basic idea of this hash function is similar to that
of the Digit Analysis hash function. The performance
evaluation of this hash function shows the worst since it is

extremely data dependent.



MAIN PROGRAM OF CHARACTER BASED HASHING SCHEME IN PASCAL

: MAIN PROGRAM STARTS HERE

Initialization;
{Read Keys one by one converting them to hashed addresses}
for Key No := 1 to MAX_NUM_KEYS do
begin
Init While Do_Loop:
{Read first two characters of a key to get & hashed address}
Read first Two_Chars (addr);
fRead character by character to form a key}
while More Chars_Left_For_Key do
begin
Read A Char;

Increment_Char_Pointer;
end;

{Using the resulting hashed address, store the input key in
the corresponding bucket.}
Store Key In_Addressed Bucket (addr) ;
end: {outer for}
{Print oul all the keys in every hashed buckets.}
Print Keys In_tach Bucket:

{Print out all the necessary statistics for an analysis.}

Eratilnit i SFaitilsittile st

end.



S

This algorithm requires 2

stored 1in. One register must

functions to reduce the hash

algorithm is the followings.

Professor Maurer's Hash Function

registers for a
have fast

address calculation

key to be

shift operation

time. The

so the right
in the shift

register and
registers and
into the key
bit of

bits right, and do the same

the same exclusive oring as

do the same exclusive oring

1. Store A key both in the shift register and key register.
2. The shift register will rotate one bit right,

most bit will be stored in the left most bit

register.
3. Then from the rightmost bit of both the key

shift register, get two bit from the two

exclusive or them and store the resulted bit

register. Repeat this process until the leftmost

the key register and and the shift register are completed.
4, In the second time, shift three

exclusive oring as described in the process 3.
5. Then shift 7 bits right, and do

described in the process 3.
6. Then shift 15 bits right, and

as described in the process 3.

7. Then shift 31 bits right, and
as described in the process 3.

Then shift 63 bits right, and
as described in the process 3.

The main program of the

do the same exclusive oring

do the same exclusive oring

Professor Maurer's hashing

scheme will be shown in the next page.



MAIN PROGRAM OF CHARACTER BASED HASHING SCHEME IN PASCAL

{a’::‘::‘:;‘::‘::‘::‘::'::'::‘::‘::'::'.':'::'::': MAIN PROGRAM STARTS HERE sedfrdfrdesed:

begin
Initialization;
{Read Keys one by one converting them to hashed addresses}
for Key No := 1 to MAX_NUM KEYS do
begin
Init_While Do_Loop;

{Read character by character for a key loocking up the
corresponding ASCII| value and convert the value to binary}

while More_Chars_Left_For_Key do
begin
Read_A_Char;
Convert ASCII_To_Binary;
Increment_Char_Pointer;
end;
Shift_And_EX_OR(1);
Shift_And_EX_OR(3);
Shift_And_EX_OR(7);
Shift_And_EX_OR(15) ;
Shift_And_EX OR(31);
Shift_And_EX_OR(63);
Get_Hashed_Addr (Bucket Addr);

{Using the resulting hashed address, store the input key in
the corresponding bucket.}

Store_Key_In_Addressed_Bucket (Bucket_Addr) ;
end; {outer for}
{Print out all the keys in every hashed buckets.}
Print_Keys_In_Each_Bucket;
{Print out all the necessary statistics for an analysis.}
Print_Statistics;

en-

_lo._



4, Characters to Prime Number Mapping Hashing Function
4 .A) Hardware Descriptions and Hash Address Computation

This hashing scheme requires hardware components such
as random access memorys for each character of a key and
128 exclusive or gates for this specific design. 1In a RAM,
2 to the power of 6 (64) prime numbers are stored to be
mapped out using ASCII character bits as input address. So
the output from a RAM is selected bits of prime number
which is chosen from the input character in the key
attribute register. In order to reduce the contents of a
RAM from 128 words to 64 words, only significant 6 bits out
of 7 ASCII character bits are used for RAM input address.
The number of identifiable <characters in a key is 16 in
this scheme, so there are 16 prime numbers coming out of 16

respective RAMs,

These 16 prime numbers are exclusive-ored together to
produce a final hash address in a parallel way. First bits
of the 16 prime numbers are exclusived-ored together to
generate the first bit of the resulting hash address.
Simultaneously, the second bits of the 16 prime numbers are
exclusive-ored together to generate the second bit of the
resulting hash address and so on. All of the 16 bits of

final hash address are created at the same time.

To generate the first bit of the hash address, the

first bit of the first selected prime number and that of

_ll_



the second selected prime number are exclusive-or together
to generate the resulting bit to the next level of
exclusive-or. By the same way, the first bit of the third
prime number and that of the fourth prime number will be
exclusive-ored to generate a resulting bit for the next
level of exclusive-or. So these two generated bits are
exclusive-ored together in the second 1level to send a
resulting bit to the third 1level exclusive-or with the
resulting bit generated from the fifth, sixth, seventh, and

eighth bits.

The resulting bit from the second 1level exclusive-or
will be exclusive-or again with another resulting bit out
of the four first bits of the fifth, sixth, seventh, and
eighth prime numbers. So the third level exclusive-or
resulting bit will be exclusive-or again with the resulted
bit came out from the eight first bits of 9th, 10th, 1llth,
12th, 13th, 14th, 15th, 16th prime numbers by the the same
way. Finally, the fourth level exclusive-or with two bits
from the third level will generate the first bit of the

hash address.

This is a entirely concurrent process, so while the
first bit of the hash address 1is being calculated, the
other fifteen bits of the hash address is being computed

through the four levels of exclusive-or gates.

This hash address is acquired within single machine
cycle time including several gate delays. Then it uses only

_12_



portion of this 16 bits address to get a bucket number. If
the number of buckets is 256, only 8 bits out of the 16

resulting bits are necessary.

4.B) Simulation Processes.

In software simulation, this process should be very
tedious serial task. It generates the first hash address
bit going through the four level of exclusive-or functions.
Each 1level has its own storage to keep the resulting
boolean value of exclusive-oring. The first level of
exclusive-or procedure has a 1loop to get the eight
resulting exclusive-ored bits and store them on the array
one at a time. Then it moves to the second level to
exclusive-or the eight bits stored in the first level
array. Then four bits will be stored at the second level
array resulted from the 8 bits in the first level array. In
the third level, it stores two boolean bit values into the
third level array after the exclusive-oring the four bits
in the second level array. The final exclusive-or is called
to generate the hash address bit wusing the two bits stored
in the third 1level array. The final bit is stored in the

final hash address array until all bits are calculated.

After it finishes the first bit computation, it does
the same process as above to get the second one, and get

_13_



third one, and so on. When it finishes computation for 16
hash address bit, it uses only the portion of them to get
the bucket address. The main program of the characters to
prime number mapping hashing scheme testing module will be

shown in the next page.

_14_



MA27"" PROGRAM OF CHARACTERS TO PRIME NUMBERS MAPPING HASH IN
begin
Initialization;
{Read Keys one by one converting them to hashed addresses}
for Key No := 1 to MAX_NUM_KEYS do
begin
Init_While_Do_Loop;

{Read character by character for a key looking up the
corresponding prime number and convert it to binary number}]

while More_ Chars_Left_Ffor_Key do

begin
Read A Char;
Look_Up_Char_In_Prime_Num_Table (index) ;
Save Binary Prime_Num(index) ;
Increment_Char_Pointer;

end;

{Get the first digit of the binary prime numbers which

converted from a character, and do the Exclusive-0r ocperation

to get the first bit for the hashed address. Repeat this
process up to the last digit.}

for Bit No :=1 to MAX_BOOL DIGIT do
begin
First Level_tx_Oring;
Second_Level _Ex_Oring;
Third Level Ex_Oring;
Last Ex Oring_And_Store_An_Addr _Bit;
end;
Store_Key_In_Addressed_Bucket;
end; {outer for}
{Print out all the keys in every hashed buckets.}
Print_Keys In_Each Bucket;
{Print out all the necessary statistics for an analysis.;

Print_Statistics;

end.

_.15_

PASCAL



< MORE DISCUSSION >

There could be hundreds of hash functions, but some of
them are well known such as divison method, random method,
midsquare, algebraic coding, folding, digit analysis, and

radix method. Lum, Yuen, and Dodd (CACM 14 1971, 228-239)
mentioned that algebraic method is the second to the division
method in their performance evaluations. They also said that
midsquare method gives good performance. Both of them could be
easily implemented using some hardware components, but the
midsquare method requires time for a multiplication and the
algebraic coding method takes time for iterative subtraction
processes for each key. As they noticed that folding and digit
analysis are erratic, both could be ignored. The random
method also requires time to generate a random number using
the key as the seed. The radix method would take long time to

convert each digit of a key into another base number.

< CONCLUSION >

The hash function for the database filter should perform
as good as the division method can do, and it must compute a
hash address within single machine cycle. To satisfy these two
requirements, Characters to Prime Number Mapping hash function
with an aid of hardware 1is highly recommended for the
effective database coprocessor and for other similar
applicative areas.

.._16._





