Improving Shin’s Massive Cross-Referencing with Shin Sort

Printed on Nov. 6, 2007

Dr. Dong-Keun Shin

DK Shin Laboratory
Hwa Shin Building, Suite 701
705-22 Yuksam-dong, Kangnam-gu
Seoul, Republic of Korea

Abstract

The author of this paper, Dong-Keun Shin combines his method for massive cross-
referencing or equi-join database operation with his sorting method which is called, “Shin sort.”
Shin sort helps the author’s massive cross-referencing method by removing the time in scanning
through source and target hash tables. The author’s massive cross-referencing method can be
improved by replacing hash tables with source and target Shin trees that are created in the process
of Shin sort. However, the stack oriented filtering technique(SOFT) that the author uses in his
original join method stays the same. Five functionally different hash coders and a stack will still
be used in dividing source list and target list and in keeping track of their respective sublist. By
the Shin Sort the SOFT will be enhanced in terms of speed, and then it will be used in S*-DBMS.

Intreduction

The author’s doctoral dissertation in 1991[1] and his subsequent papers[2,3] explain enough
about his join database algorithm. After the author discovered a new sorting and searching method
in 1998, he realized that his new sorting method can also improve his join method. This paper will
show how his sorting method improve his method for the massive cross-reference or the join.

To understand the Shin sort, one needs to solve several problems based on the author’s
explanation on his algorithm. DK Shin has given sample problems in his papers[4,5,6] in 1998. He

also used the examples in writing his program for Shin sort. The program has successfully worked

Copyright® 2007 by Dong-Keun Shin. All rights reserved.

because he has exercised enough with the sample problems for implementing his sorting method.
Here one of the examples will be used. The input list that is written in the author’s July 4, 1998
paper[4] is used for the source list that contains nine input strings. Target list contains eight strings
for last name. Let’s assume that for each string the first hash coder provides a hash address that is
greater than or equal to zero and smaller than or equal to 255. We put a string with its generated
hash address like KIM(87). This means that the first hash coder reads input string “KIM” and it
generates 87 for its hash address. The number 87 is an acceptable hash address because 0=87=
255. The source and target list and their corresponding Shin tree are shown in figure 1.

Source List: KIM(87), KING(123), LION(204), KIND(31), JADE(64), KIN(208),
KENT(17), KILE(196), QUEEN(123)
Target List: SHIN(251), SMITH(157), MOHAMAD(172), KIM(87), WANG(196),
BROWN(22), LEE(138), KING(123)
Source Shin Tree Target Shin Tree

Figure 1: An Example of Source and Target List and Their Corresponding Shin Tree

The example shows how the source and target strings are inserted into their corresponding
Shin tree after the keys are hashed by the first hash coder. As the both trees show, the terminal
nodes of the trees should point to the item that is the key and its associated information. The
above example has only one field, which is the key itself, in each item. Two or more than two
keys may have same hash address such as “KING” and “QUEEN” in the source list. Their hash
address is 123. As shown in the source Shin tree, both are linked together from the terminal node.

The linked list is sent to another hash coder for further division in most cases.
Combining Shin’s Massive Cross-Referencing with Shin Sort

The figure that appears in my papers and helps readers to understand the stack oriented filter
technique needs to be modified as shown in figure 2 in this paper. The Shin sort is adapted for the
massive cross-referencing to suit increasing speed in the process of the SOFT. The hash tables in
old paper [1] such as S, T, Si, Ti, Sij, Tij, Sijk, Tijk, Sijkl, and Tijkl are no longer needed.
However, the stack is still desired to keep track of return bucket address in both source and target
Shin tree. Instead of source hash table and its corresponding target hash table, the source Shin tree
and the target Shin tree are recommended to be used to speed up the filtering process. Replacing
the source and target hash tables with the source and target Shin trees is the only change and all
other ideas stay the same in the algorithm.

While the source and target lists are being repeatedly divided by a maximum of five
functionally different hash coders, detected unnecessary items are eliminated and a group of source
and target items are merged if they have an identical key. The SOFT examines produced hash
addresses in both source and target Shin tree, traversing the trees in preorder. Since each node
contains a digit for hash address number, the traversed nodes’ digits will be pushed into a stack one
by one. Being pushed into and popped from the stack, the digit number of the traversed nodes will
provide a hash address. Then the SOFT compares the hash address provided from the source Shin
tree with its closest hash address in the target Shin tree. If both hash addresses are identical, the
items in the linked list of the source Shin tree and the items in the corresponding target Shin tree for
the hash address have potential to be included in the resulting list. Thus, the items may go through
further filtering process. If a hash address found in the source tree does not have its matched hash
address in the corresponding target tree, all of the linked source items for the hash address will be
discarded. On the other hand, if a hash address found in target tree does not have its

corresponding hash address in the source tree, all the linked target items for the hash address will be

tep 1 S T
ié#_—\ ‘_S:I-‘MJ: _S_‘a uree

Jhlﬂ/ ﬁd
5,?{.5'[3 /EI"‘D 'D'% ﬁ ’Tr&
T Aost A -1h _ i
Piﬁv{a“-—) a
‘55;-.:5:;:_ T kL jsi o @ e 9 9
Trea_ Bmkr:_[;r
i n Stock /J{ 2

‘2':: i{dw ey f: l O£ ien (29, M=)
P poiter <= 5 st AHF1H
oy ? .)
' T; list AF-1h
@/% ZfI!Il . :

3 I P
= —\ Stack S J Tf/

Sh

S
J

. shin Shr
05.(/1 L n ﬁ N [] 5 TR n
Pn?rl =

Siy bst —rp-4h T
TD)‘ st f{!—[}ﬂng j& i ; @/% Gf)b
k T?J'k ﬁa* e _é?iif'

n Shin-) OD£ksen
N Jk lisk OTAE

o Feo 3
. .(.-——-—— H
S L2 Silj | T . o

@})\Q) é‘)\ ST Ty st ARz

Stock Skl Ti

‘ I I fd_
' _é%ﬂg/lﬁ;_ peider~_ M »

Tres-
5:1 KT —
Sijtl bt 01112 L @/@\@ A
TI)‘M Lt AT - e i
The. So sz/f s<msn <« %
ot metmyjljﬁ }wwf oq;{:,ouf - :“L li;s{: AHF {2

Figure 2: Shin’s Algorithm for Massive Cross-Referencing with Shin Sort

discarded. Of course, if a hash address is not found in both source Shin tree and target Shin tree,

both traversings will just neglect and skip the process of further work for the hash address. If Shin
trees are used in the massive cross-referencing, the above case will be handled more efficiently than
when the source and target hash tables are used. All other parts in the filtering process are the

same with the original SOFT process and previous description of the algorithm.
Discussion

The process for insertion of an item will be the time complexity that is proportional to one
(i.e., O(1)) in Shin tree data structure. One may try binary search tree sort in the author’s massive
cross-referencing method instead. Then in the first level, the insertion will take O(log(N/B)) time
complexity when N is number of input items and B is number of buckets, e.g., 256. While hash
tables require scanning time for empty buckets, the BST sort requires time for insertion of which
time complexity is not proportional to one. Therefore, if the BST sort is used in the massive cross-
referencing method, it’s unavoidable to be proportional to NlogN. Before getting involved in
filtering any unnecessary data, it seems to have quite a long set-up time.

The author once had a thought about indexed linked list with binary search. It is an
alternative way of speeding up the SOFT. It requires O(logB) time complexity for insertion, so the
initial set-up will be proportional to NlogB. However, the double linked list in the scheme can
make the system too complicated for readers to understand, so indexed linked list was not adapted
to suit simplicity.

Considering that Shin sort requires neither scanning empty hash addresses nor insertion
process that is beyond O(1) time complexity, one will see that the BST sort cannot be the best
choice here. Having source and target hash tables is also cumbersome while Shin tree is offered to
save time in scanning empty buckets. Accordingly, this paper shows that the combining the

author’s algorithm for massive cross-referencing with Shin sort is reasonable and right.
Conclusion

Why is Shin sort useful? It’s because it has the fastest searching capability as well as fastest
sorting capability, that is, O(1) and O(N) respectively. The author’s operation for massive cross-
referencing is no exception. The Shin sort provides an efficient way to accelerate the operation.

With the Shin sort the massive cross-referencing operation will perform more powerful SOFT touch

on unnecessay data to be filtered. The combination of Shin’s massive cross-referencing and Shin

sort will guarantee O(N) performance with the best filtering effect. Shin sort and search database

systems (S® DBMS) will be equipped with the combination to provide the maximum performance.

As the author is confident, in every software where sorting and searching is used, Shin sort and

search will be employed for its outstanding capability.

[1]

(2]

[3]

[4]

[3]

(6]

Bibliography

Shin, D. K. 4 Comparative Study of Hash Functions for a New Hash-Based Relational
Join Algorithm. Pub. #91-23423, Ann Arbor: UMI Dissertation Information Service, 1991.

Shin, D. K. and Meltzer, A. C. “A New Join Algorithm.” ACM SIGMOD RECORD, Vol.
23, No. 4, Dec. 1994: 13-8.

Shin, DK, “The Theory of Massive Cross-Referencing,” The Proceedings of the Eighth
International Conference on Software Engineering and Knowledge Engineering, Jun.
1996: 545-52.

Shin, DK “A Sorting Method by Dong-Keun Shin,” Handwritten Manuscript Displayed in
WWW.DKSHIN.COM, US Copyright Registration: Txu 857-130, Jul. 1998.

Shin, DK “Character-Based Binary Tree Sorting for Integer Numbers,” Handwritten
Manuscript Displayed in WWW.DKSHIN.COM, US Copyright Registration: Txu 864-961,
Jul. 1998.

Shin, DK “A Sorting Method by Dong-Keun Shin,” Typed Manuscript Displayed in
WWW.DKSHIN.COM, US Copyright Registration: TX 4-842-998, Aug. 1998.

Ma)ﬁ//'}i/-e___ Cross. /é

Comdins JM&@,@ prth JZ%?&
; 2 fﬁ;n/()%im /%’//.:_07

o s it 7;,7&{# Noro — K2y (FHash A/ﬁ/ce;f /f/méer)

(0 < Hhsk Aﬂ{%ir Nianber % 255)

ource 1 K7\ (87> KINE 23> /70N (200) KIND (1 31
JAOE (61 Kz(&/(,zoé’) RENT Cr7) KILE (/94 61(/55\/(/;;
Terget : SHIN (241> SMITHST y M

CHAMAD (172) KM 7 $
AENGT U36) BROWN (=) LEEUSS) Ker a3) L;MITH(;Q;)
s

Sowrra. S, T gk Thh Tree
J

TI’IL A_[poxfe, oxam Z—Q, 5)’103/\15)ﬂow ‘6\&, Soyree
ﬂ”f?(L4 P/{ ’ﬁ@&f%s fmféféﬂd{ il thelr
Zjo{l'n - n “EJ’A,Q/ R’

COryespe JD{;@V +he)@/ s
%Lweg AYe. }laS/h%zy o /’MSA V](JHOJ’L 745 [w#l,{n&g

e

Jffv% e Lomind rohs of the Abeor hoy/
/@ommé o %byﬁ, of its s The afoe L(MZ/Q‘
hos }/u one— ool | Hhat-is Ky, i sadk //_
[vo o grore. T Fove foy omay floawa. Sorze
frosh “ﬂé/wy SUh, as INEr? and “EHIEEN7
n e Ssurce N5t . Jhe Aash Fv/ﬁ//’:éf_f“ i A3
As Shown i the Soupce S Trme , LA s
finfed Ml the ermmd sode ok points 2
the Jinked It The finfed fist sy he sent
to another pash coder for Surther Alilson

/9)”0(_655.

7o omafe (9\/ expbtion onser a Zﬁd n

Aéfu_)

@/ /199{ % /)afer Showld be /7;1/1575

Jhe /W/{’/r“/ "The Theo 0/ Mpssive Cross —

//@7[)@@%6{'/’1 p ’ A/ ears i Jhe /‘Q/DM};J 07[

+he Ef /p.é/jt/ Tnternational Corcterence on Soffanre
51;/}\/7!2-@/7‘” MGZ /C’Jo’t)/éﬁ/ . g{/;;‘?ﬁﬂf/?/ . June_
/‘f?c(//yﬁf S %S Lo S5, Jhe, Fiqure 2
O%ﬂg/ /7@7)1% shows ful] /[@,nr?oﬁm a]L Th s

—--._2___

]Zfiqrg JAU‘IJ ;4/ o riTAm ﬂ)— Masdve ﬁbg— &ﬁl d

% 2N Shin Sot 5
\/ g;;iu ﬁq(

5/?”'(3 s g 'D‘ZL —>

'T_V’.ep_
T st oDy
. Fe . 2
Seurce j c:;-g,‘}‘
Shin ﬁ"‘“”"' JMZ, DO @ ?g @g

o R
w T 5—{30[(* / J‘keg L
Shin Shin BT . | D& T4£n (29, = 255)

| < S st AHFR

& 5 peinter 1 e sk .
S S T TS
Step3 ' . -

Y 55&%__ i Tj

. 65-14;'1-’ Shin
0 ‘é(] L '_7 —> Tree Tirto_
Pninjcek_} R v
(’5[\,} List - 4B R)Qt
J Ust AHr-1h =M e 3 O
~ AL
Jk TIJJ(S{iﬂ* / S
AhY 5!4;;4« | . O£k=sn
“Tieo F"“{’H@. e \j{} k [rst ./U‘H'"'ﬂ"—;

@?)\)R T BT ST i st 0wl
@ o e T J

4 ﬁc . g\;{r_ k[%! S Trae [re.s
sijt bl ot ST > S0
iy

Sowhce. HLQM O<Em £ /
mfmeﬁ?ed bfﬁodﬂioﬁpuf <~ 51}%‘; S{é "gﬂ_ﬂ% e

4 [90r thm 74 vy Masslve Cposo ﬁefﬁqu&
Aé/@, tho Shin sortt LIPS ﬂ/so :/Amg// Z
author, fas fabls such ao\‘/j’l 7, S, T
Sv, T, Sk Tk, STELYTIAL s o7a
f;/)20 éyw éﬁﬂé/ﬁi/ oifu@/f/éﬁéﬂwé //

7722#@4 /?M&{/ fo 7 o /’.Q%///’%,

binthol ailiinrs o BodA Siwce M 2%7

eIin oo, Tyslea / Sourca hash deble and

ks onas A M/,;7 75 bosh table | ruyea Shin

s Mn/{ —ézya_f Shh. Do Com bo vse] &

)%L%/ 7 the’ f3/tesn /pmaef_c Fre—raeetd s,

R AW

W
h;'{/.u"?

/ﬁ/é// 0#% ﬂ/éﬂk-f aneo. Ao EQML/Q; AC%\/"(/_,Q_
S Te ﬂmﬂ/ %’L /fJLL: am@%@ﬁ%

oy V/M(&/ a mm%mwf /%W_W&é%ﬁ/fﬂmf

/ZM/(&W{% - f/mﬁM/f_fW)ﬂ [1RgnS Arze_

7 o s of o
/hw Monﬁxt?w{ %7ﬁmo¢€, on /%Muffmé

,.-.4____.

‘ﬁ}/. Thae Stock ovrete,] %r/?é@r Fechitn
Sxaom he.s /)z/oa/wwé%{ Josh f-ﬁé//fufa e bt
5o ubee o éﬂ“j%L i cham/ WW7 Zha
Awes N /MM J/Z%ZM/ f/%f U(WA@V:F
df‘ﬁ/@“%vf/‘wﬂ/ A /Mot/a"a/e_- JrosA Aaé//ﬂu{,
5o The JORT Coompomes a ﬁaf/um/p/}fa_s;
/?Vb[/fhﬁ(@fl Frem e USotirce P Fome TP
s clysest bish addag B -&Léﬂjﬁ S

-éfht,&/, I7D bbb Josh addyesses ora /o M/‘Cgf_j i
tfoms in the linked st of the Sowres Shiac
Lirg X rave /o%mw o ho incduded K The
nesulfing [, 7hus, Hh Mems Ve f,/,,,v?/b
Qfmm%w %/#Wfl? /yocefq {7/\- s ijz//fgy(/
M%&Wﬂw ﬁ & fash oholpess
OQW’W{ . JSoutrca_ Lrea_ 0/(0.9._5 ol fava ,‘715
Covvusponclng fash sdilnass in the Lorgel tree
Al o | the é;%vf n %/fﬂ/@@/ Ixt i Sourte
Lbivo will bo eliminde] On +he sthes ﬁm%
i A Sfrosh M/h@ff 74:%144;/ (1 ’L/“ﬁvsz/‘ ‘rus

0

28] /00% /}5V& [7_% (,0)71@4/0}40/? AﬁﬁA A@{/y/w/f’
r P

/h i‘Ae, Souitr o —é/qu_/ ﬁ// “f/@

/74644?; Bt

he Soara K5t Wi foo 2lhminide] 7

/1 éf,r Zéb - M% /{ M/ﬁ ﬂ—z/%&ﬂ“ \zﬁré-&b
%14'/} no%ggwﬁ P Soth Sousrce S
’574@/&% et _Shin g Se Gaver=
/us//waé f,é/ m/;mcem o Surther mwz
'Zf Shin taes are vced in_ Lt oessive.
oross- 1@744/%:,}/4 | The above case) do
Srordfe] \%ﬁfé Hhan abhen souwrce sl
Léujz,% frash DBobles pra Vﬁ%/ :

»47’/ o7Fe s /%ca,ge,; e Sho Surme @‘%

+he /%CZYS f,éooxt h %\7;0%//19\5’7/
/wau %W\&Zéfoxy%/m / 7N ? o om.,

< Conddiars>— <Dzcussho

Insoption_ 0][as /}{mf; wl] 4afe 01) Pl
@om/@ﬁ N n Crea gapn SPructurg

e

ear
Zf Jth’m/ Binoi) drnns . Avrst

///z/%w%/ nserLon. sl Lnfoa
ﬁC—%/) //4 //Aff L
(B 4 of buckefs , io, 20 5 o
%NM/ buf /LMHALASZAW«

Hosing Iorca. o ryot fesk s
/3 ¢ ﬂ”’*z!%’“f %&ﬂ/ / ﬁé j/ . e Ix

//,Vm//&/e/%o é/m,@/ g Iwih e

/L/ﬂﬂéﬂ, /uwmg/%
<&f”tf//%ffm -

/;/)\ T, S y,c%@/ Vm—ﬂei?f‘
/@_} ;ﬁ% ,Lac\r%é ca aé/ Ax Me//
as ()n) Jw*évl nb / ssive Clog

/z%f%enu}j £ ﬂO ﬁﬁ« J27><‘c_e, ’AO}L 7Zwe
~ /] —

&j//f/ 5”‘6 /beg/,@r AN \07%64%14(7
é&%w al She 1 QAX

@‘m%/ i

