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Abstract

The problems associated with cross-referencing of massive
amounts of items from one list to another are that most
operations to date have been time-consuming and ineffective.
This paper suggests Shin's algorithm as the solution to the
problem of massive cross-referencing. Shin's algorithm's
ability to divide items into a fixed number of buckets to allow
processing elements of each bucket to filter unnecessary data
i parallel (what is called the divide and conquer strategy) and
its inherent characteristic of parallel processing makes it
highly adaptable for massive cross-referencing operations.
This paper will illustrate several parallel processing methods
of this algorithm at the software level, the processor level, the
memory level, and the auxiliary storage level, and show how
the inherent qualities of this algorithm accelerate the massive
cross-references from one list to another. The paper will also
explain how the algorithm is applied to solve the problem of
redundancy checking.

1 Introduction

Algorithms for sorting, searching, hashing, and redundancy
checking are often used when there are multiple items in a
single input list. There are many efficient algorithms already
in these areas, but when there is a single input list (i.e., two
identical input lists) or multiple input lists, and each list has
multiple items, an efficient algorithm is needed for massive
cross-referencing. Massive cross-referencing, also known as
join or more specifically equi-join database management
operation, is frequently used but it is too time-consuming.

An example of massive cross-referencing is
shown in Figure 1. In this example, there are two input lists:
the source list (S) and the target list (T). For the output list,
there is the resulting list (R). Each list has items (i.e., rows)
and columns, and each item is composed of one or more
components. Each column can be specified by a title (e.g.,
Name, Pet, Location, Animal, and Species as’shown in the
example).
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A component or a group of components can be
used as a key (which can be called either a key component or
key components) for massive cross-referencing. In the
example, Pet is used as a key for the source list and Animal is
used as a key for the target list. If a key of the source list is
equal to a key of the target list (e.g., Pet of S = Animal of T),
matched items in the S and T lists are merged to produce an
item in the resulting list.

T

(souu]igﬂ.h) (Target Input List)
Nowe Pet Location Animeal | Species
Smith Cat Indoor Dog Mamenal
Brown m‘ Outdoor Mouse Manunal
Lec Indoor Goldfish Fish
Kim Dog Indoor Parot @ Bid
Waag Parot Indoce Snake | Reptile

(Resulting Owtpat List)
Name Pet Location | Aniwal | Species
Brown Outdoor Mamamal
Kim Dog Idoor | Dog Mameoal
Waag Parot Indoor : Parrot Bird

Figure 1: An Example of Massive Cross-Referencing

The author's algorithmic solution to the massive
cross-referencing and several implementation groupings of the
Shin's algorithm are illustrated in this paper.

2 Shin's Algorithm for
Massive Cross-Referencing

As shown in Figure 2, Shin's algorithm repeatedly divides the
source and target lists by a maximum of five functionally
different hash coders and filters unnecessary items whenever
they are detected. After completing a hashing (or division)
process, the algorithm checks whether or not the source items
and the target items in 2 pair of source and target buckets have
an identical key. If so, the source and target items in the pair
of buckets are then merged in order to produce items for the
resulting list. Otherwise, the return address of the current pair
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Figure 2: Shin's Algorithm for Massive Cross-Referencing
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of source and target buckets is saved, and the source and target
items in the pair of buckets are further divided by another
finctionally different hash coder. If a bucket is empty and the
corresponding bucket in the pair is not, the items in the
corresponding bucket are eliminated. The algorithm continues
dividing the items in a pair of buckets, merging the items, or
elimmating unnecessary items until every item in the buckets
of created hash tables is either merged or eliminated.

The prime data structure used in Shin's algorithm
is a stack. Each stack element consists of a return bucket
address and a pair of two hash tables: one for the source items
and the other for the target items. The stack pointer keeps
track of the top element of the stack whenever a stack element
is pushed into or popped up from the top of the stack. In the
process of Shin's algorithm, several pairs of hash tables (e.g.,
a maximum of five) can be created. A source hash table
includes a fixed number of bucket pointers (e.g., 256) for the
linked lists of source items, while the target hash table
includes the same amount (e.g., 256) of bucket pointers for the
linked lists of target items.

One may choose proper numbers for the
maximum level of the stack and size of the hash table. In this
paper, five and 256 have been selected for the level of depth
and table size respectively. As shown in step 1 in Figure 2,
both source and target lists are divided into a maximum of 256
sublists for each list by the first hash coder. After the source
and target items are hashed by the first hash coder, the items
in the source bucket (i) either match or don't match with only
the items in the corresponding target bucket (Ti). If an empty
bucket exists, all items in the corresponding bucket will be
eliminated since they have no potential of being included in
the resulting list.

As shown in step 2, Figure 2, the key values of
the source items are hashed by the second functionally
different hash coder. As a result, the source items are stored
in addressed buckets in the source hash table. Using the same
hash coder, the target items are hashed and stored in the target
hash table. While the items are being divided into a maximum
of 256 groups, the first produced hash address is compared
with the subsequently produced hash addresses to see if they
are the same. If so, the source items and target items are
merged. Otherwise, four kinds of pairs of buckets (ij) may be
created. The pairs will appear in the following combinations:

(1) Neither the source bucket (Sij) nor the target bucket
(Tij) is empty.

(2) Sij is not empty, but Tij is empty.

(3) Tij is not empty, but Sij is empty.

(4) Sij and Tij are both empty.

When one of the two buckets is empty as in cases
(2) and (3), the items in the corresponding bucket are
unnecessary and therefore filtered out. Shin's algorithm
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provides a termination condition that ends further division
processes. Whenever the items in the pair of source bucket
and target bucket are divided by a hash coder, the algorithm
checks for the termination condition. If the produced hash
addresses in a group of source and target items are identical,
the termination condition is satisfied. Then the algorithm stops
dividing the group and starts merging the source and target
itemns.

In a paralle] architecture, multiple functionally
different hash coders (e.g., 2 maximum of five) may be
employed in checking the termination condition. If their logical
ANDed results show that only a single hash address is
produced from each involved hash coder, the group of source
and target items can be merged without final screening, In
order to eliminate 100 percent (ie., greater than
99.9999999999% which is equal to 1-(1256%) of the
unnecessary data, keys have to be hashed by a maximum of
five functionally different hash coders to make certain that all
produced hash addresses are the same. Therefore, two kinds
of software implementation of Shin's join algorithm is left to
one's choice: multiple hashings for each key at a time or a
single hashing in each reading of a key. If one uses the latter
for his software implementation, the filtering effect reaches
99.609375% (i.e., greater than 255/256) while a final
screening process is needed for the merge.

Shin's algorithm proceeds from the first pair of
buckets (e.g., addressed 0) to the last pair of buckets (e.g.,
addressed 255), checking that both source and target buckets
are not empty. If neither buckets are empty, the next (return)
bucket address (e.g., i, ¥, ik, or ijkl in stacks of Figure 2) is
saved and the items in the source bucket and the
corresponding target bucket are rehashed (or divided) by the
next functionally different hash coder. During the rehashing
process, the algorithm compares the first produced hash
address with the others. If the produced hash addresses are
identical, the items are merged; otherwise, the items are
further divided by another functionally different hash coder.
Steps 3, 4, and 5 in Figure 2 can be explained similarly. In
step 6, no available hash coder is left and all unnecessary data
have been filtered; therefore, the source and target items have
been merged without being rehashed.

Shin's algorithm requires a fixed number (e.g.,
a maximum of five) of readings for each key to determine
whether the associate item is necessary or not. In Shin's
algorithm, the number of visits to the buckets is proportional
to the number of items even in the worst case; therefore, the
time complexity of the algorithm is O(N) and traversing the
buckets in the hash tables causes no problem. The time
complexity of the algorithm for massive cross-referencing
cannot be beiter than O(N) because the key in every item must
be read at least once. The Shin's algorithm does not require
another algorithm or a method to employ the divide and
conquer strategy, thus, the algorithm is straightforward and



simple. A simulation program [12] for the algorithm was
written by the author and was successfully executed. The
following sections will explain where and how Shin's
algorithm can be implemented.

3 Software Level

At the software level, parallel execution of Shin's algorithm
can be performed by four types of processes: the hash process
of source keys, hash process of target keys, filter processes,
and merge process(es), as shown in Figure 3. The parallel
execution of the algorithm at the software level can be divided
into the hash phase, filter phase, and merge phase. The filter
phase and the merge phase occur concurrently. In the hash
phase, hash processes of source keys and target keys can be
concurrently executed to complete a source hash table and a
target hash table. After all keys in source and target lists are
hashed in the hash phase, the filter phase starts. Every filter
process within a group eliminates unnecessary items in a
bucket and repeatedly rehashes their keys as necessary.
Whenever a filter process finds a list of source items and a list
of target items that are necessary, it sends the pair of lists to the
merge process for final screening and merging. These
processes must not interfere with each other. Thus, an
interprocess communication mechanism (e.g., message queues

Figure 3: Parallel execution of Shin's algorithm at
Software level

4 Processor Level

In the filter phase, unnecessary items in each pair of source
and target buckets can be eliminated by identical filter
processors. The filter processors can be either software or
hardware filters. Figure 4 illustrates the general block
diagram for processor configuration. In this structure, there
are three functionally different processors: the hash processor,
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the filter processor, and the merge processor. The hash
processors hash keys; the filter processors eliminate
unnecessary items and pass necessary items to the merge
processor; and the merge processor receives necessary items
from the filter processors and merges them with final
screening. Thus, the speed of output will not heavily depend
on the bandwidth of the data path between the filter processors
and the merge processor because almost all unnecessary items
have already been eliminated.

Sowce
L——x| Heh
Processor
Turpet
| Hath
Procamser °
Pher
Procossor:
Deta Bus )

Figure 4: Processor Configuration

The general block diagram can stand for both
the software and hardware filter processors. The next section
will explain this in more detail.

4.1 Software Filter Processors

Usually, general purpose processors are used
for software filter processors. The programs that implement
the Shin's algorithm are simply duplicated in all the filter
processors, and they are executed according to command
signals received by the processors. Each software filter
processor (e.g., processor i) may be assigned to a bucket (e.g.,
Si and Ti) one at a time. The software filter may create
another pair of hash tables (e.g., Sij and Tij) and rehash the
keys of the items in the assigned bucket. Then, it eliminates
unnecessary items in a bucket whenever there is no item in the
corresponding bucket. It continues traversing buckets and
creating a pair of hash tables as necessary until it finishes the
traversal.

4.2 Hardware Filter Processors
Hardware filter processors have progressive

architectures which include multiple hardware hash coders
such as Shin's (mapping) hash coder [12] and associated
memory for hash tables. More than one hash coder will be
used for subsequent rehashings. There is no relationship
between the hash addresses of a key generated by functionally
different Shin's hash coders. In this processor, effective
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Figure 5: An Implementation of Shin's Algorithm at Auxiliary Storage Level for Maximum Paralle] Execution

registers or RAMs are needed to implement indexes for hash

tables. A special register is needed to load the first produced
hash address and compare it with the subsequently produced
hash addresses. The design details will be provided in a
subsequent paper.

One may also consider associative memories
for parallel filtering in Shin's algorithm. In this case, the
architecture of every filter processor element is similar to the
architecture of the hardware filter processor. The associative
memory usually has a slow staging process; thus, a
conventional memory scheme should be employed together
with the associative memory to speed up the staging process.

5 Auxiliary Storage Level

Using the current algorithms such as nested-loop, sort-merge,
and hash [6, 13], one may find it almost impossible to provide
a solution for massive cross-referencing at the auxiliary
storage level. Those algorithms require massive key
comparisons, but unfortunately ordinary read/write functions
in auxiliary storage devices cannot perform such complex
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operations. Figure 5 shows how Shin's algorithm can be
implemented at the auxiliary storage level to solve this
problem. First, the device should be equipped with intelligent
hashing capabilities that produce a hash address from the
reading of a key and the storing of items in buckets in either
disk storage or local memory. The hash and filter processors
(HAFs in Figure 5) perform hashing and staging items. When
the local memory space is not sufficient to hold the items, the
items are partitioned by their hash addresses and stored in
subset files in the auxiliary storage. After the hashing and
staging process, associated HAFs from each bucket in each
subset file or local memory start filtering items in parallel.
After the filtering process, only the wanted items are sent to
the host processor for final screening and merging. The
hashing capability may provide several hash addresses in each
reading of a key by several functionally different hash coders.
If subset files are being created in performing the Shin's
algorithm, source and target files are being read by read
headers (S-Reads and T-Reads in Figure 5) while the subset
files are being written by write headers (W-Writes and T-
Writes) with aid of buffer modules (BMs in Figure 5).



Multiple readers can read groups of items in a source file and
a target file in parallel. More write headers are needed to
write items in buckets in parallel.

Since other current algorithms have to compare
source keys with target keys, they have to move every item
into the main memory to perform massive cross-referencing.
However, in Shin's algorithm, keys are compared to one
another only after almost all unmecessary items are filtered out.
In the filtering process, the algorithm repeatedly uses a simple
hash operation without requiring complex operations. Thus,
the parallel architecture of Shin's algorithm at the auxiliary
storage level is simpler and more feasible than those of other
current algorithms for massive cross-referencing. One may
bhave noticed that the auxiliary filter device which implements
the Shin's algorithm requires an architecture as complex as the
architecture of a hardware filter processor and its operation
isn't as fast as on-the-fly operations.

6 Relationship to Another Problem

When one needs to produce a list of duplicate items or a list of
distinct items from an input list using a specified key
component(s) in every item, the best solution to the problem
of redundancy checking is the theory of redundancy checking.
Shin's algorithm not only provides a basis for the theory of
massive cross-referencing, but also provides a basis for the
theory of redundancy checking. Although there is only a single
input list in the problem of redundancy checking, Shin's
algorithm can still be applied to provide a solution to the
problem. Here, a single hash table (B), instead of a pair of
hash tables (S and T), is created in each hashing process as
shown in Figure 6. Thus, a stack element consists of a hash
table (e.g., B, Bi, Bij, Bijk, and Bijkl) and a return bucket
address (e.g., i, §, §jk, and ijkI) as shown in Figure 6. A stack
will contain a fixed number of stack elements. Thus; the
traversal through buckets in the hash tables remains identical.
In the solution, there are two major kinds of
bucket configuration; the bucket is either empty or not empty.
Assuming that a bucket is represented as Bi (e.g., Bo, B1, B2,
..., B255 in a hash table B), the combinations are as follows:

(1) Bucket Bi is empty.
(2) Bucket Bi is not empty:
(2.1) Bucket Bi has a single item.
(2.2) Bucket Bi has more than one item.

If bucket Bi is empty as in case (1), the algorithm will pass the
bucket and go to the next bucket Bi+1. If bucket Bi is not
empty (2) and has a single item as in case (2.1), there i$ no
duplicate for this item in the input list, therefore, the algorithm
will keep the item in the resulting list. Finally, case (2.2)
shows that bucket Bi includes items of which duplications are
not verified. Thus, the keys of the items are rehashed by
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Figure 6: Shin's Algorithm for Redundancy Checking

another functionally different hash coder. If produced hash
addresses are identical again, the items may be recorded as
duplicate items in the redundancy list after a final screening.
On the other hand, if the produced hash addresses are not
identical, the algorithm will continue traversing buckets from
the first bucket of a newly created hash table (Bif). If multiple
functionally different hash coders produce multiple hash
addresses, the algorithm may not need the final screening as
explained in the second section of this paper.

The problem of redundancy checking can be
converted into another problem which uses two identical input
lists. The converted problem needs to produce a list of
duplicate key items or a list of distinct key items as output.
Then one can use the flow and principle of the Shin's
algorithm, as shown in Figure 2, for the converted problem,
adding an additional step to the final screening. In the final
step, an item and its corresponding item in a pair of buckets
are examined. If the corresponding item is the same item,



both are ignored. If different, their keys are compared to
produce an output. Thus, the transformation that maps the
problem of redundancy checking to the problem of massive
cross-referencing provides the means for converting the Shin's
algorithm that solves the problem of massive cross-
referencing into a corresponding algorithm for solving the
problem of redundancy checking. Therefore, the Shin's
algorithm can be a solution for the problem of redundancy
checking.

7 Conclusion

The Shin's algorithm for massive cross-referencing always uses
a hash table with a fixed number of buckets (small in
comparison to the hash algorithm). Thereby, the Shin's
algorithm can divide items into a fixed number of buckets,
allowing same amounts of processing elements to filter, in
parallel, unnecessary items in the buckets. The fixed hash
table size of the Shin's algorithm makes its parallel processing
more efficient simplifying the software application and the
hardware architecture. Furthermore, while the hash algorithm
for massive cross-referencing cannot hash source and target
keys in parallel, rather performing them serially one after
another, Shin's algorithm can. Shin's algorithm also permits
key comparisons only after almost all unnecessary items are
filtered; therefore, the algorithm reduces the number of item
transfers. The Shin's algorithm can also be carried out in a
recursive routine. The characteristic of recursion in Shin's
algorithm and the use of only a single algorithm in an
implementation allow the filtering element to have a simpler
and more adaptable architecture. Finally, to add to its
desirability is the fact that it also can be applied to the problem
of redundancy checking.

Shin's algorithm, because of its favorable
inherent characteristic, can be broadly used for massive cross-
referencing operations and join database operations. General
design concepts for the application of Shin's algorithm for
massive cross-referencing have been explained. Detail design
and enhancement of the implementation of Shin's algorithm in
various ways will be presented in the future.
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