15. KAIST Presentation
Viewgraphs
Jul. 1, 1995



A New Join Algorithm

Dong Keun Shin and Arnold Charles Meltzer

Samsung Electronics Co., Ltd.
Communication Systems R&D Center
Songpa P.O.Box 117, Seoul, Korea

Department of Electrical Engineering and Computer Science
The School of Engineering and Applied Science
The George Washington University
Washington, D.C. 20052

Prepared for the Presentation in KAIST on July the 1st, 1995



OBJECTIVES IN THE RESEARCH
® Find a new efficient join algorithm (i.e., an optimal solution).

® Design an effective database computer which uses the new join algorithm.

RESULTS
® Shin’s join algorithm is discovered.

® HIMOD-a database computer is designed.



WHY OUR RESEARCH ON THE JOIN WAS EXCITING?

® The join is a very useful operation in RDBMS.

® A frequently used operation.

® One of the most time consuming operations (i.e., Major bottleneck in RDBMS).
® The join operation might be included in future DBMS.

® Join theory can be used to solve cross referencing type of problem.



RELATIONAL OPERATIONS
® Project

® Select

® Join

® Union

® Intersect

e Difference

® Cartesian_Product



JOIN

® The join operation concatenates a tuple of the source relation (S) with a tuple
of the target relation (T) if the value(s) of the join attribute(s) in this pair of
tuples satisfy a pre-specified join condition, and it produces a tuple for the
resulting relation (R).

Relation S Relation T
A B C D E F
d e f d g a
b d g a d ¢
h d b

SELECT S.* T.*
FROM S, T
WHERE S.B = T.E

JOIN S, T (S.B = T.E)

Relation R
A B C D E F
b d g a d c
h d b a d c¢



FOUR MAJOR JOIN ALGORITHMS
® The Nested-Loop Join Algorithm

® The Sort-Merge Join Algorithm

® The Hash Join Algorithm

® The Shin’s Join Algorithm



® The Nested-Loop Join Algorithm

The two relations involved in the join operation are called the outer relation
(or source relation) S and the inner relation (or target relation) T, respectively.
Each tuple of the outer relation S is compared with tuples of the inner relation T
over one or more join attributes. If the join condition is satisfied, a tuple of S is
concatenated with a tuple of T to produce a tuple for the resulting relation R.

Relation S Relation T
A B C D E F
d e f d g a
b d g a d c
h d b

SELECT S.* T.*
FROM S, T
WHERE S.B =T.E

JOIN S, T (S.B = T.E)

Relation R
A B C D E F
b d g a d c
h d b a d ¢



® The Sort-Merge Join Algorithm

Each of the source (S) and target (T) relation is retrieved, and their tuples
are sorted over one or more join attributes in subsequent phases using one of many
sorting algorithms (e.g., n-way merge). After the completion of the sorting
operation, the two sorted streams of tuples are merged together. During the merge
operation, if a tuple of the relation S and a tuple of the relation T satisfy the join
condition, they are concatenated to form a resulting tuple.

Relation S Relation T
A B C D E F
d e f d g a
b d g a d ¢
h d b

Relation S’ (Sorted) Relation T’ (Sorted)

A B C D E F
b d g a d ¢
h d b d g a
d e f

SELECT S.* T.*
FROM S, T
WHERE SB =T.E

JOIN S, T(S.B =T.E)
Relation R

A B C D E F

b d g a d c

h d b a d ¢



® The Hash Join Algorithm

The join attributes of the source relation (S) are first hashed by a hash
function. The hashed values are used to address entries of a hash table called
buckets. The same hash function is used for the join attributes of the target
relation (T). If the join attribute of a tuple is hashed to a non-empty bucket of the
hash table and one of the join attributes stored in that bucket matches with the join
attribute, the equi-join condition is satisfied. The corresponding tuples of the S
and T relations are concatenated to form a tuple of the resulting relation (R). The
process continues until all the tuples of the target relation have been processed.

Relation S Relation T
A B C D E F
d e f a d c
b d g d g a
h d b

When h(’Key’) = a hash address,

SELECT S.* T.* h(e) =0
FROM S, T h(’d’) = 12
g) =2

WHERE S.B = T.E h(Cg’) =

JOIN S, T (S.B = T.E)

Relation R
A B C D E F
b d g a d c¢
h d b a d c¢



® The Shin’s Join Algorithm

In Shin’s join algorithm, the source and target relations are repeatedly
divided (or rehashed) by a maximum of five statistically independent hash
functions until a group of source tuples and target tuples are found to have an
identical join attribute. The source and target tuples in the group are merged after
a final screening in order to produce resulting tuples.

10



Step 1

S list /D_D

T list

polnter N

(S hash table) [g T} (T hash table)
Stack _..4 BuE
2
’ i
(Source tuples : (Target tuples
in Si linked list) in Ti linked list)

(e.g.,n=255)

(87 hash table) [g T| (77 hash table) Step 2
: ; R st 0T
EEIR ¢ < T list -l
t 0<Lia
S s
t
Jinig.
S 1
Step 3 _ : (ll .
sij tist 00 - O > > izl
Tij ist AL - O ;
Elr...-{H}-—-‘ [jk r—'IHI'-..'ii:
0<j<n T ; =
iin
S T
jko Step 4
Jifkd
1jk2 sijktist ~H T
! Tijk tist ~HF g
wedHHol1j K1
J'_D E R 0<k<n
Jijkm |.
s T
Step § Jijk1o].
ATITER
Jiiki2],
sijia list: AHF - . , _
Tijki list /{H} ‘D‘;, ijklm o-—{]{}-{}-l
0<1<n H
ijkin},
The source and target Stildm h.“ .D{_
tuples are merged. < Tijklm list =
OSm'Sn

Figure 1. The SOFT and the Shin’s Join Algorithm

11



begin

Initialization;
finish : = false;
-~ repeat

Hash_Source_And_Target_Relations;
If Only_One_Hash_Address_Produced then
begin
Merge_Tuples And Output;
If No_More_Next_Bucket_Addr then
begin
If Bottom_Of_Stack then
finish : = truc
clse
begin
Pop;
if No_More_Next_Bucket Addr then
begin
if Bottom_Of_Stack thea
finish := true

clse
begin
Pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then

finish : = true
clse
begin
Pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then
finish : = true
clse
begin
pop;
if No_More_Next_Bucket Addr then
begin
if Bottom_Of_Stack then
finish : = true
else
begin

Assign_Source_And_Target;

Save_Next_Bucket_Addr;

push;

end;
end;

end;

clse

begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;

push;

end;
end;

end

clse

begin
Assign_Source_And_Target;
Save Next_Bucket_Addr;

push;

end;
end;

end

clse
begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end;
end
clse
begin
Assign_Source And_Target;
Save_Next_Bucket_Addr;
push;
end
else
begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end

until finish;
end.

Figure 2. The Shin’s Join Algorithm

12



requests a join Back-End(s) Data
> Base
Host .
pointers to source and target
tuple lists for merge (Filtering
' Process) Main
(Merging . . P p .
Process) |, __retrives tuples to be included in a resulting relation Memory
)
v v

l

Output

Figure 3. Execution of the Relational Join in HIMOD

13



TIME COMPLEXITY ANALYSIS

® The Nested-Loop Join Algorithm O(N*N)

® The Sort-Merge Join Algorithm O(N log N)
® The Hash Join Algorithm ONN)

® The Shin’s Join Algorithm O(N)

14



PROBLEMS OF THE HASH JOIN ALGORITHM

® Hash Function Dependency
The performance of the hash join algorithm is largely dependent on the
distribution performance of a chosen hash function.

® Data-Size Dependency
The performance is dependent on the ratio of hash table size to the number
of source input tuples.

® Excessive Join Attribute Comparisons
The join attribute comparisons include the comparisons for unnecessary
tuples.

® No Filter Concept in the Algorithm.

® Insufficient Characteristic of Parallelism

15



ADVANTAGES OF THE SHIN’S JOIN ALGORITHM

® Less Hash Function Dependency than the Hash Join Algorithm
My join algorithm uses several functionally different hash methods to reduce
the dependency of a chosen hash function’s distribution performance.

Shin’s mapping hash function is recommended.

® No Precalculation to Determine Hash Table Size
Fixed size hash tables are used instead of a variable size.hash table.

® Better in Hardware Implementation
It is easy to implement in hardware since hash tables are fixed size.

® No Unnecessary Join Attribute Comparison
It allows join attribute comparison after more than 99% of the unnecessary
tuples are eliminated.
Other join algorithms rely heavily on tedious join attribute comparisons.

® Inherent Characteristic of Parallelism
The Shin’s join has two major processes: the filter process and the merge
process. These processes can be executed in parallel and they also can be
divided into subprocesses to run concurrently.

Hashing process can be divided into multiple subprocesses while the hash

join algorithm cannot easily provide the parallelism in hashing due to
frequent memory lockings.

16



CONCLUSION

Question:

Answer:

What is the optimal algorithmic solution for the join?

Need to conduct more experiments to compare the hash join
to mine.

We believe the Shin’s join algorithm is superior to the
hash join algorithm not only because of the aforementioned
problems that the hash join algorithm has but also because of
the advantages of my join algorithm.

17



6 1 lli »1 1
1
,—1‘_—> 2 /L »]2 EX-OR
ROM1 . Module
CHAR1 r% (64*16 bits) (For 1st
] Address
‘11 : Bit
! K- > 16 )
1 1/
6 1
ﬁj'__> ROM 2 : _/l ~|; EX-OR
. —> Module
CHAR 2 71/1 (64*16 bits) : N (For 2nd
71L1 . 1 Address
K Bit)
THE 0 o
key ©O o °
REGISTER
(o) (o]
1
» EX-OR
Module
1 llJ . (For K-th
6 2 L/ . Address
i :t:) ROM 16 16 Bit)
CHAR“% (64*16 bits) .
B A
Ki7—

Figure 4. Hardware Mapping Hash Coder

18



From ROM 1

From ROM 2

From ROM 3

From ROM 4

From ROMS

From ROM 6

From ROM 9

From ROM 10
1

From ROM1

)
)

From ROM1
From ROM 13

From ROM 7

From ROM 8 _—_)
2
4 :)

From ROM1

From ROM 15 j D
From ROM 16

Figure 5. Exclusive-OR Moduel for a Hash Address Bit

19



const
MAX_NO_CHARS_IN_KEY = 16; {number of characters in a key}
MAX_NO_BUCKETS = 256; {number of buckets in the hash table}
NO_PRIMES_IN ROM = 64; {number of prime number in each ROM}

type
{Type for the array of 16 characters key}
Key Array Type = array [1..MAX_NO_CHARS_IN_KEY] of char;

var
{Array table of 64 prime numbers for each ROM}
Prime_Table : array [1..MAX_NO_CHARS_IN_KEY, 0..NO_PRIMES_IN_ROM-1]
of char;

function Mapping_Hash (Key : Key_Array_Type) : integer;
var
Temp, Char_No, Index : integer;
begin
Temp := 0;
for Char No := 1 to MAX_NO_CHARS_IN_KEY do
begin _ :
Index : = ord(Key[Char_No]);
if Index > = NO_PRIMES_IN_ROM then
Index := Index - NO_PRIMES_IN_ROM;
Temp := EX_OR(Prime_Table[Char_No,Index],Temp);
end;
Mapping_Hash := Temp mod MAX_NO_BUCKETS;
end;

Figure 6. Shin’s Mapping Hash Function

20





